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Abstract In this paper, a mathematical model of the diffusion of cAMP into olfactory
cilia and the resulting electrical activity is presented. The model, which consists of
two nonlinear differential equations, is studied using perturbation techniques. The
unknowns in the problem are the concentration of cAMP, the membrane potential, and
the quantity of most interest in this work: the distribution of CNG channels along the
length of a cilium. Experimental measurements of the total current during this diffusion
process provide an extra boundary condition which helps determine the unknown
distribution function. A simple perturbation approximation is derived and used to solve
this inverse problem and thus obtain estimates of the spatial distribution of CNG ion
channels along the length of a cilium. A one-dimensional computer minimization and
a special delay iteration are used with the perturbation formulas to obtain approximate
channel distributions in the cases of simulated and experimental data.
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746 D. A. French, D. A. Edwards

1 Introduction

Identification of detailed features of neuronal systems is an important challenge in
the biosciences today. Cilia are long thin cylindrical structures that extend from the
olfactory receptor neurons into the nasal mucus. Transduction of an odor into an
electrical signal occurs in the membranes of the cilia. The cyclic-nucleotide-gated
(CNG) channels which reside in the ciliary membrane are activated by cAMP, allow a
depolarizing influx of Ca2+ and Na+, and are thought to initiate the electrical signal [4].

In [2] a mathematical model for the diffusion of cAMP into an olfactory cilium
from a grass frog is developed and used with numerical computations to determine
plausible distributions of CNG ion channels. A key conclusion that is suggested in
[2] and demonstrated more strongly in [3] is that the distribution of the ion channels,
ρ̃(x̃), is heavily clustered in a short segment of the cilium, roughly 1/3 of the distance
from the base (open end) to the tip (closed end).

As is typical of inverse problems this one appears to be highly ill-conditioned;
certain matrices that arise in the numerical solution process have condition numbers
as high as 1013. Thus, even though the residuals and sample computations in [2] are
quite accurate, it is desireable to develop solutions in a different way.

In this paper we use perturbation techniques to develop an approximate solution
to the inverse problem. Based on previous work [3], we look for ρ̃ in the form of a
density pulse: either a delta function or a tall Gaussian with a narrow base. Thus the
problem reduces to finding the strength and position of each pulse. Using a simple one-
dimensional numerical minimization and special delay iteration we develop accurate
approximations using the perturbation solution to cases with simulated and experi-
mental data. Below we describe the mathematical model.

Governing equations

We begin with the dimensional equations governing our model, which we obtain from
[2]. We consider diffusion and reaction of cAMP molecules in solution, the (volume)
concentration of which we denote by C̃(x̃, t̃). cAMP diffuses in the x̃-direction in a
one-dimensional channel of length L . Conservation of mass of cAMP is then given by

∂C̃

∂ t̃
= D

∂2C̃

∂ x̃2 − α
∂ S̃

∂ t̃
, 0 ≤ x ≤ L , (1)

where D is the diffusion coefficient, S̃(x̃, t̃) is the concentration of bound cAMP, and
α is a conversion factor. The equation for S̃ is given by

S̃ = BS ρ̃F(C̃),

where BS (units of molecules per channel) is the number of binding sites that are
needed to activate the channel, and ρ̃(x̃) is the density of channels along the surface
of the cilium. (In the inverse problem, we are trying to solve for ρ̃.) F(C̃) is the
dimensionless Hill function describing the binding process, given by
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Perturbation approximation of solutions of a nonlinear inverse problem 747

F(C̃) = C̃n

C̃n + K n
1/2

,

where K1/2 is the “half-maximal concentration”, so-called because it is the value
of C̃ at which F = 1/2. From the appendix, we see that n = 1.7. Note that upon
substitution of S̃ into (1), we are left with a diffusion-type equation solely in C̃ . Thus,
it suffices to impose boundary and initial conditions only on C̃ , not on S̃. Initially, the
channel has no cAMP, so

C̃(x̃, 0) = 0. (2)

At the exposed end of the cilium (x̃ = 0), the concentration is the same as the value
Cb in the bulk and there is no flux through the sealed end of the cilium (x̃ = L):

C̃(0, t̃) = Cb and
∂C̃

∂ x̃
(L , t̃) = 0. (3)

The binding initiates a change in the sodium current flux J̃ (x̃, t̃) through the channels,
which is governed by the following equation:

J̃ = gCNG PṼ S̃

BS
,

where gCNG is the conductance of the channels, Ṽ (x̃, t̃) is the membrane potential,
and P is the maximum open probability for the channel.

The membrane potential Ṽ is also related to the current through standard cable
theory:

1

Ra

∂2Ṽ

∂ x̃2 = J̃ , 0 ≤ x̃ ≤ L , (4)

where Ra is the (lineal) resistance density of the longitudinal current in the cilium. The
form of (4) dictates that we impose two boundary conditions upon Ṽ . At the exposed
end of the cilium (x̃ = 0), the potential is the same as the value in the bulk, which we
denote by −Vb because it is negative. Moreover, there is no change in potential at the
sealed end of the cilium (x̃ = L):

Ṽ (0, t̃) = −Vb and
∂ Ṽ

∂ x̃
(L , t̃) = 0. (5)

The quantity actually measured is Ĩ (t̃), the total current, which is simply the integral
of J̃ :

Ĩ =
L∫

0

J̃ d x̃ = − 1

Ra

∂ Ṽ

∂ x̃
(0, ·), (6)
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748 D. A. French, D. A. Edwards

where we have used (4) and (5). Thus, given current data Ĩ (t̃) and parameters D,
α, BS , K1/2, Cb, gCNG, P , Ra, and Vb we wish to find the functions C̃ , Ṽ , and ρ̃.
We specify that ρ̃ consists of a single narrow pulse; thus the real unknowns are the
pulse position x̃0 and its strength, which is equivalent to the number of channels. This
is an inverse problem since the coefficient ρ̃ is unknown.

In Sect. 2 we scale (1)–(6). In Sect. 3 we solve the resulting system using pertur-
bation techniques. Finally, in Sect. 4 we use the perturbation solution along with both
simulated and real current data to determine an approximation for ρ̃. This last section
involves some basic numerical computations.

2 Scaling

In this section we nondimensionalize the governing Eqs. (1)–(6); we will introduce
scalings to simplify our problem and illustrate key physical ideas. We begin by scaling
those variables for which characteristic values are self-evident:

C(x, t) = C̃(x̃, t̃)

Cb
, V (x, t) = Ṽ (x̃, t̃)

Vb
, and x = x̃

L
.

For the Hill function we rescale to obtain

F(C) = Cn

Cn + ε
=

(
1 + ε

Cn

)−1
with ε =

(
K1/2

Cb

)n

.

We choose the letter ε because from the Appendix we see that ε � 1. We note that
F(C) = O(1) for all C . We then scale the boundary and initial conditions:

C(x, 0) = 0, C(0, t) = 1,
∂C

∂x
(1, t) = 0, (7)

and

V (0, t) = −1,
∂V

∂x
(1, t) = 0. (8)

Now we can determine the proper scale for the current. Letting

I (t) = Ĩ (t̃)

Ic

(where the subscript “c” refers to “characteristic value”), we have

Ic I = − Vb

Ra L

∂V

∂x
(0, t) or I = −∂V

∂x
(0, t) where Ic = Vb

Ra L
. (9)
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Perturbation approximation of solutions of a nonlinear inverse problem 749

To scale ρ̃, we use its average value as the characteristic value ρc. Thus we have

ρ(x) = ρ̃(x̃)

ρc
where ρc = 1

L

L∫

0

ρ̃(x̃) dx̃ .

Using the definitions of J̃ and S̃ in (4) and then rescaling we obtain

∂2V

∂x2 = [bρF(C)]V, with b = Ra L2gCNG Pρc. (10)

Note that we have now eliminated J̃ from our equations completely. It is shown in the
Appendix that b = O(1). Though not necessary because of the form of (10), it will
be convenient later to calculate V (x, 0). Substituting t = 0 into (10), we obtain

∂2V

∂x2 (x, 0) = [bρF(C(x, 0))] V (x, 0) = 0,

where we have used (7). Then solving the above subject to (8), we have

V (x, 0) = −1. (11)

Lastly, we may use our results to create a time scale. We substitute our formula for S̃
into (1) and using t = t̃/tc yields:

∂C

∂t
= Dtc

L2

∂2C

∂x2 − αρc

Cb
BSρ

∂ (F(C))

∂t
.

Choosing tc = L2/D, we find

∂C

∂t
= ∂2C

∂x2 − aρ
∂ (F(C))

∂t
with a = αρc BS

Cb
. (12)

It is shown in the Appendix that a = O(1).
Because ρ is a function of x , in general equations (10) and (11) cannot be solved in

closed form. Previous studies have assumed that ρ̃ is a constant, which is equivalent
to ρ = 1. However, recent numerical work ([2], [3]) supports the hypothesis that
the receptors occur in small regions of high density. This behavior occurs often in
biological systems (see Sect. 8.1 of [1]). Thus, let us consider the case of a “density
pulse” at a point x0. For x near x0, we let ρ(x) = O(ε−p) with p > 0. Because we
have defined

1∫

0

ρ(x) dx = 1, (13)
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750 D. A. French, D. A. Edwards

the width of each pulse must be ε p. Thus

ρ = ε−pr(ξ), ξ = x − x0

ε p
, and x0 = O(1).

For the regions outside of the pulse, we take the density to be o(1). It is most convenient
to make the density transcendentally small. The pulses should be symmetric in ξ and
nonnegative. Thus we define r as follows:

r(ξ) = h′′(ξ), h′′(ξ) transcendentally small as |ξ | → ∞, (14)

where we use the h′′ form for later algebraic convenience. Symmetry and positivity
then require that

h′′ ≥ 0, h′′(−ξ) = h′′(ξ).

Now we integrate up to obtain additional facts about h. First, upon integrating from
h′′ to h′, we obtain one arbitrary constant. Another constant may be chosen in order
to specify the amplitude of the pulse. Therefore, we choose

h′(−∞) = −1

2
, h′(∞) = 1

2
. (15)

If we integrate h′ up to obtain h, we obtain an arbitrary constant, which we set equal
to zero by requiring that

h(ξ) = −ξ

2
+ transcendentally small terms as ξ → −∞. (16)

At first blush, it may look as if this implies more than the selection of a constant.
However, if h(ξ) ∼ −ξ/2 + O(ξ A), where A < 1, then taking the second derivative
would lead to a term in h′′ that decays algebraically, which would violate (14).

Lastly, we wish to point out some implications of our definition for h. First, we
note that the integral of an even function is an odd function plus a constant. However,
since h′(−∞) = −h′(∞), we conclude that h′ is odd. Moreover, we know that the
integral of an odd function is even, so we have that

h(ξ) = ξ

2
+ transcendentally small terms as ξ → ∞. (17)

Here are a few simple choices for the pulse. First, we can choose it to be a δ-function,
in which case we have

h′′(ξ) = δ(ξ), h′(ξ) = H(ξ) − 1

2
and h(ξ) = |ξ |

2
, (18)
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Perturbation approximation of solutions of a nonlinear inverse problem 751

where H(ξ) is the Heaviside step function. Alternatively, we could choose it as a
Gaussian, in which case we have

h′′(ξ) = 1√
π

exp
(
−ξ2

)
,

h′(ξ) = erf(ξ)

2
, and h(ξ) = 1

2

[
ξerf(ξ) + 1√

π
exp

(
−ξ2

)]
. (19)

We should point out that one can examine the δ-function postulate for ρ independent
of the ε−p context, and it may be useful to do so in the future. The value of the
perturbation approach is to be able to handle smooth pulses and provide corrections
to the δ-function case.

The following re-formulation of the derivative term in (12) will be used in the next
section:

∂(F(C))

∂t
= −F2(C)

∂

∂t

( ε

Cn

)
. (20)

3 Perturbation solution

In this section we use perturbation techniques to solve the problem defined by the
Eqs. (12), (10), (7), (8) and (9).

Solution of the cAMP diffusion problem

First we examine the effect of the pulses on C . (This will also establish a value for p.)
Substituting (20) into (12), we obtain

∂C

∂t
= ∂2C

∂x2 + aρF2(C)
∂

∂t

( ε

Cn

)
. (21)

Motivated by the form of (21), in the outer region we let

C(x, t) = C0(x, t) + O(ε).

Substituting this into (21) and using our decay hypothesis about ρ, we have, to leading
order,

∂C0

∂t
= ∂2C0

∂x2 , (22)

which is not surprising. Biologically, we are stating that simple diffusion holds because
there are no receptors in the outer region.

In the inner region we hypothesize the following perturbation expansion:

C(x, t) = c0(ξ, t) + εc1(ξ, t) + ε2c2(ξ, t) + o(ε2), (23)
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752 D. A. French, D. A. Edwards

where the form is motivated by (21). Substituting this form and our definition for ρ

into (21), we have, to leading order,

∂c0

∂t
= ε−2p ∂2(c0 + εc1 + ε2c2)

∂ξ2 + aε1−pr F2(c0)
∂(c−n

0 )

∂t
,

from which we conclude

∂2c0

∂ξ2 = 0, (24)

∂2c1

∂ξ2 = 0, (25)

and

∂c0

∂t
= ε2(1−p) ∂

2c2

∂ξ2 + aε1−pr F2(c0)
∂(c−n

0 )

∂t
, (26)

where we have used the fact that F(C) = O(1). Therefore, the dominant balance is
given by p = 1.

The matching conditions for c0 are

c0(−∞, t) = C0(x−
0 , t), c0(∞, t) = C0(x+

0 , t).

Solving (24) subject to the above yields

c0(t) = C0(x0, t), (27)

and hence there is no layer in C0.
In the regions where C = O(1) it is acceptable to use the following expansion

F(C) ∼ 1 − ε

Cn
(28)

for C = O(1). The exact function and our approximation are shown in Fig. 1. Note
that the agreement is quite good for a wide range of C values. However, it is not good
for C small which would correspond to small t . In many, but not all, cases, the effects
of the reaction term for t small are negligible. In Sect. 4 we develop a delay iteration
to handle this difficulty.

If we now examine the spatial derivatives of the inner solution we have

∂

∂x
(c0 + εc1 + · · · )(±∞, t) = ∂

∂x
(C0 + · · · )(x±

0 , t).

Since ∂c1/∂x = (1/ε)∂c1/∂ξ and ∂c0/∂ξ = 0 from (27) we have

∂c1

∂ξ
(−∞, t) = ∂C0

∂x
(x−

0 , t) and
∂c1

∂ξ
(+∞, t) = ∂C0

∂x
(x+

0 , t).
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Fig. 1 Plot of F and a perturbation approximation

From (25) and the above

c1(ξ, t) = ξ
∂C0

∂x
(x0, t) + A(t) (29)

and hence there is no layer in ∂C0/∂x , either (Note that A(t) = C1(x0, t).). So no
measurable layer occurs in the O(1) outer solution, subject to the small-t restrictions.

Thus we may simply solve (22) on the domain 0 ≤ x ≤ 1, subject to the boundary
and initial conditions (7) written in our new variable:

C0(x, 0) = 0, C0(0, t) = 1,
∂C0

∂x
(1, t) = 0, (30)

Biologically, we are saying that since the threshold concentration for reaction is so
small (O(ε)) that once C = O(1) the reaction has already progressed to completion
and it no longer affects the diffusion process.

There are two ways to solve our system: a Fourier series and a “Laplace series”,
based on an expansion of a Laplace transform solution. The latter works best for small
t , which is where we will be mistrustful of our solution. Thus we derive the standard
Fourier series solution and obtain

C0(x, t) = 1 −
∞∑
j=0

4

(2 j + 1)π
exp

(
−

[
(2 j + 1)π

2

]2

t

)
sin

(
x(2 j + 1)π

2

)
. (31)

Note that for t = O(1), our expression can be approximated well by only a few terms
in the Fourier series.
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754 D. A. French, D. A. Edwards

Solution of the membrane potential equations

Now we turn our attention to V . In the outer region, motivated by our previous choice
of p = 1, we let

V (x, t) = V0(x, t) + εV1(x, t) + o(ε). (32)

Substituting (32) into (10) and (8) and using our hypothesis about ρ, we have, to
leading orders,

∂2V0

∂x2 = 0, V0(0, t) = −1,
∂V0

∂x
(1, t) = 0, (33)

and

∂2V1

∂x2 = 0, V1(0, t) = 0,
∂V1

∂x
(1, t) = 0. (34)

From the above we see that in the outer region we have a time-varying series of linear
profiles which matches the numerical solution in Fig. 2b of [2].

For the inner regions, we hypothesize the following perturbation expansion,

V (x, t) = v0(ξ, t) + εv1(ξ, t) + ε2v2(ξ, t) + o(ε2). (35)

Substituting our expansions into (10), we have, to leading three orders,

ε−2 ∂2(v0 + εv1 + ε2v2)

∂ξ2 = bε−1r F(c0 + εc1)(v0 + εv1 + ε2v2).

So,

∂2v0

∂ξ2 = 0, (36)

and, noting that c0 = C0,

∂2v1

∂ξ2 = bh′′F(C0)v0, (37)

as well as

∂2v2

∂ξ2 = bh′′[F(C0)v1 + c1 F ′(C0)v0]. (38)

Now we carefully consider the implications of our equations. In order to estimate the
parameters in the inverse problem, we need to use all the time-dependent data we have
been given. Thus, we needed to expand to O(ε2) in the above in order to get time
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Perturbation approximation of solutions of a nonlinear inverse problem 755

dependence in our problem through C0. In particular, we see that nowhere does C0
enter into our equations for the leading order of V . Without C0, there is no way for
t to enter the problem. Hence we determine that V0 and v0 are independent of t . The
matching conditions for v0 are then given by

v0(−∞) = V0(x−
0 ), v0(∞) = V0(x+

0 ).

Solving (36) subject to the above yields

v0 = V0(x), (39)

and hence there is no layer in V0. Rather, the layer is in the x-derivative of V , just
as is seen in Fig. 2b of [2]. (Note that the value of V0 at the pulse is currently undeter-
mined.)

Next we continue by examining v1. The matching conditions for v1 are given by
matching to our outer solution:

∂v1

∂ξ
(−∞, t) = dV0

dx
(x−

0 ),
∂v1

∂ξ
(∞, t) = dV0

dx
(x+

0 ). (40)

Next we substitute V0 in for v0 in (37), then integrate once with a specific endpoint of
ξ = −∞ to obtain

∂v1

∂ξ
(ξ, t) − ∂v1

∂ξ
(−∞, t) = bV0 F(C0)[h′(ξ) − h′(−∞)]

Now, from (15) and (40),

∂v1

∂ξ
(ξ, t) − dV0

dx
(x−

0 ) = bV0 F(C0)

[
h′(ξ) + 1

2

]
. (41)

By substituting ξ = ∞ into the above we obtain a jump condition on dV0/dx :

dV0

dx
(x+

0 ) − dV0

dx
(x−

0 ) = bV0 F(C0) (42)

using (40) again. Note that as far as the jump condition is concerned, the actual form
of h does not come into play. Also note that (42) is exactly what we would obtain had
we taken ρ to be a δ function without any consideration of ε.

Integrating (41) (but this time doing an indefinite integral), we have

v1(ξ, t) = ξ
dV0

dx
(x−

0 ) + bV0 F(C0)

[
h(ξ) + ξ

2

]
+ A(t), (43)
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756 D. A. French, D. A. Edwards

where A(t) is unknown for now. The matching conditions for v1 are more subtle.
Expanding (32) near x0, we have

V (x0 ± εξ, t) = V0(x0) + εξ
dV0

dx
(x±

0 ) + εV1(x±
0 , t) + o(ε)

Since V (x0 + εξ, t) ∼= v0(ξ) + εv1(ξ, t) we find that for ξ → −∞ at the O(ε) level

v1(ξ, t) ∼= ξ
dV0

dx
(x−

0 ) + V1(x−
0 , t). (44)

Similarly, we have for ξ → +∞

v1(ξ, t) ∼= ξ
dV0

dx
(x+

0 ) + V1(x+
0 , t). (45)

So, letting ξ → −∞ and using (43) with (44), we have

ξ
dV0

dx
(x−

0 ) + bV0 F(C0)

[
h(−∞) + ξ

2

]
+ A(t) − ξ

dV0

dx
(x−

0 ) = V1(x−
0 , t)

so

A(t) = V1(x−
0 , t), (46)

where we have used (16). Letting ξ = +∞ in (43) and using (45), we have

dV0

dx
(x−

0 )ξ + bV0 F(C0)

[
h(∞) + ξ

2

]
+ A(t) − ξ

dV0

dx
(x+

0 ) = V1(x+
0 , t).

Now, solving for dV0
dx (x−

0 ) in (42) and substituting in the above,

ξ
dV0

dx
(x+

0 ) − bV0 F(C0)ξ + bV0 F(C0)ξ + A(t) − ξ
dV0

dx
(x+

0 ) = V1(x+
0 , t)

where we used (17), so

A(t) = V1(x+
0 , t). (47)

From (46) and (47), we see that V1 is continuous at x0, just as V0 is. Therefore there
is no boundary layer in V1. Rather, the layer is in the x-derivative of V1, just as in V0.
In addition, our solution for v1 may be written as

v1(ξ, t) = ξ
dV0

dx
(x−

0 ) + bV0 F(C0)

[
h(ξ) + ξ

2

]
+ V1, (48)

where as before we now drop the arguments on V1 since we know it is uniquely defined
at x0 and independent of ξ .
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Substituting our formulas for v0 and v1, (39) and (48) into (38), we obtain

∂2v2

∂ξ2 = bh′′
{

F(C0)

[
ξ

dV0

dx
(x−) + bV0 F(C0)(h(ξ) + ξ

2
) + V1

]

+
(

ξ
∂C0

∂x
+ C1

)
F ′(C0)V0

}
. (49)

As was done in (40) we find that

∂v2

∂ξ
(∞, t) − ∂v2

∂ξ
(−∞, t) = ∂V1

∂x
(x+

0 , t) − ∂V1

∂x
(x−

0 , t). (50)

Therefore, we may simply integrate (38) from ξ = −∞ to ξ = ∞ to obtain a jump
condition for V1:

∂v2

∂ξ
(∞, t)− ∂v2

∂ξ
(−∞) = b

∞∫

−∞
h′′ [F(C0)(bV0 F(C0)h(ξ)+V1)+F ′(C0)C1V0

]
dξ,

where we have used the fact that h′′ is even. Continuing to simplify, we have from (50)

∂V1

∂x
(x+

0 , t) − ∂V1

∂x
(x−

0 , t)

= b2 F2(C0)V0γ + b(F(C0)V1 + F ′(C0)C1V0) with γ = 2

∞∫

0

h′′h dξ (51)

where we used the fact that
∫ −∞
∞ h′′ dξ = 1. Note that it is at this order that the actual

behavior of h, rather than just its behavior as |ξ | → ∞, becomes important.
We now examine the parameter γ . For the two choices of h, the delta function and

Gaussian, we have

h′′ = δ(ξ) 	⇒ γ = 0,

and

h′′ = 1√
π

exp
(
−ξ2

)
	⇒ γ = 1√

2π
.

We now obtain several helpful jump conditions for V ∼= V0 + εV1 by combining
(42) and (51):

∂(V0 + εV1)

∂x
(x+

0 , t) − ∂(V0 + εV1)

∂x
(x−

0 , t) = b(V0 + εV1)F(C0) + εb2 F2(C0)V0γ

+ εF ′(C0)C1V0.
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We note from (28) that F ′(C0) = O(ε). Then dropping the O(ε2) terms, we have

∂V

∂x
(x+

0 , t) − ∂V

∂x
(x−

0 , t) = bV F(C0)(1 + εbF(C0)γ ). (52)

From (33) and (34) we have that V is piecewise linear. Using the BC’s we have

V (x0, t) + 1

x0
= ∂V

∂x
on 0 ≤ x < x0 and

∂V

∂x
= 0 on x0 < x ≤ 1. (53)

Using the above in (52) and solving for V (x0, t), we obtain

V (x0, t) = 1

1 + bx0 F(C0)(1 + εbF(C0)γ )
.

Now, from (9) and (53) we have

I = −∂V

∂x
(0, t) = −∂V

∂x
(x−

0 , t) = bF(C0)(1 + εbF(C0)γ )

1 + bx0 F(C0)(1 + εbF(C0)γ )
, (54)

where we have used our expression above for V .

4 Numerical computations with the perturbation solution

We now use our perturbation solution approach to solve problems with simulated data
and with real data from S. J. Kleene’s lab (see [2] or [3] for more information on the
experiments). We examine the case where ρ ∼ δ and thus γ = 0. In this case we have
from (54)

I (t) = bF(C0(x0, t))

1 + bF(C0(x0, t))x0
. (55)

When considering situations with real data we note that the dimensional data current,
Ĩ (t̃) tends to a limiting value as t̃ → ∞, so it is natural to define

I∞ = lim
t̃→∞

[
Ĩ (t̃)

Ic

]
.

Rewriting (55) with our form for F , we have

I (t) = b

1 + bx0 + εC−n
0 (x0, t)

so it is natural to take I∞ = b(1+bx0)
−1 in the perturbation expansion, which implies

b = I∞(1 − I∞x0)
−1. The only unknown in I (t) in (55) now is the parameter x0.

We use current data to find a value for x0 that minimizes the sum of squares (over the
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available data points) of the differences between I (t) and the perturbation formula in
(55).

Thus there are two parts of our numerical computation. First, C0 in (55) is computed.
We used a sufficient number of terms in the separation of variables expansion (31) to
ensure an accurate representation of C0. The more major numerical computation in
our procedure is the one-dimensional minimization. After determining an appropriate
x̃0 = Lx0 we find a correction to b by noting that the experimental solutions tend to
reach a steady state after t = 1. Therefore, we estimate I∞ with data at that time:

I∞ ∼= b

1 + bx0 + εC−n
0 (x0, 1)

so b ∼= I∞
1 − I∞x0

(1 + εC−n
0 (x0, 1)).

Below we detail our results for a simulated example where we know the cilium’s
channel distribution and an example with real data.

Example 1 (Simulated) Here we created current data by first solving a forward pro-
blem with ρ̃(x̃) ∼ δ(x̃ − x̃0) where x̃0 = 1.7 × 10−3 cm. We set ρ̃ so it has 400 CNG
channels and the cilium length is L = 5.0 × 10−3 cm. The current resulting from this
forward problem was used as data for our perturbation solution procedure. We took
Cb = 40 µM.

Our procedure found x̃0 = 1.76×10−3 cm and, from the b-value, the total number
of channels;

Total number of channels = b

Ra LgCNG P
∼= 409 Channels.

Figure 2 has the true and perturbation currents which compare favorably in this case.

Example 2 Figure 3 displays the results from a case with real data. Here the pertur-
bation procedure determined there were 290 channels and located the delta function
distribution at x̃0 = 1.04 × 10−3 cm.

These two examples show results that are quite common. However, in some cases,
especially for cilia with larger numbers of channels, the current residuals were not as
small.

Introducing a delay

As indicated above, the current from our perturbation approximation is not always
accurate. This is primarily because at no time do we take into account the binding.
Though it does occur only in a small region near the pulse for a small time, it does have
an effect on the concentration (particularly the flux) for a time in the neighborhood of
the pulse.

Handling the binding correctly would involve a complicated nonlinear boundary
condition on the flux. But our simulations show that in effect, the binding delays the
diffusive process. In particular, we note that once enough time has elapsed, C reaches
a value where the approximation in (27) holds and then the binding can be neglected.
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Fig. 2 The 400 channel simulated case described in Example 1. Comparison of true current and approxi-
mated current. Here Cb = 40µM and L = 5.0 × 10−3 cm
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Fig. 3 Example 2 real data case. Here Cb = 10 µM and L = 5.0 × 10−3 cm. Comparison of true current
and approximated current

The correct nonlinear boundary condition on C would require numerical solution, as
discussed above.

Thus, what we wish to do instead is introduce a delay into the concentration as used
in the computation of the current. In other words, since the current will depend on the
true concentration at time t , it will depend on the computed concentration (which does
not include the delay) at some time t − 	t , where 	t is the delay. Mathematically,
we wish to replace (55) by
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I0 = − bF(C0(x, t − 	t))

1 + bF(C0(x, t − 	t))x0
. (56)

To estimate the delay, we integrate (12) across the pulse:

0 =
[
∂C

∂x

]x+
0

x−
0

− a
∂(F(C(x0, t)))

∂t
, (57)

where we have used the definition of ρ.
Next we examine the gradient terms. We assume that binding uses up all the flux

into the pulse during this short delay period, so the gradient at x+
0 is zero. On the left,

computations of the concentration show an almost linear profile from C(0, t) = 1 to
a very small value at x = x0. Thus we may estimate the gradient at x−

0 by −1/x0.
Substituting these results into (57), we have

a
∂(F(C(x0, t)))

∂t
= 1

x0
.

Then integrating this equation to our delay time 	t , we have

a[F(C(x0,	t) − F(C(x0, 0))] = 	t

x0

so

	t = aF(C(x0,	t))x0, (58)

where we have used the initial condition for C .
Thus the computation of the delay really calls for a choice of a threshold value of F .

Thus we wish to select a value of F corresponding to a C above (which is equivalent
to a time past) which binding is a minimal effect. The first choice might be to pick the
value of F corresponding to maximum binding. Since the binding term in (12) may
be written as

F ′(C)
∂C

∂t
,

(where the second term is assumed to be roughly the same size throughout the interval
(0,	t)), this corresponds to a maximum in F ′(C), or the value of F at which F ′′ = 0.

We hence calculate F ′′ in terms of F :

F ′′ = nF(1 − F)

C2 [n(1 − 2F) − 1] .

Therefore, the value of F at the inflection point of interest is given by

F = n − 1

2n
.
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For the value of n we have chosen, this corresponds roughly to F ≈ 0.21. Then we
would substitute this value into (58) to obtain an estimate for 	t .

Simulations show that while this value of 	t does improve the fit, it is still too
small. And upon reflection, we see that by choosing F at the inflection point, we are
ignoring only the first half of the binding (up to the maximum of F ′). Therefore, what
we now wish to do is calculate the F corresponding to the latter inflection point of F ′.
This would then allow us to ignore much more of the binding.

Calculating F (3), we have

F (3) = nF(1 − F)

C3

[
6n2 F2 + 6n(1 − n)F + n2 − 3n + 2

]
.

Therefore, the latter value of F at which F (3) = 0 is given by

F = 3(n − 1) + √
3n2 − 3

6n
.

For the value of n we have chosen, this corresponds roughly to F ≈ 0.44. We found
that the value 0.44 was too high and, therefore, used the value 1/3 which is intermediate
to the earlier estimate of 0.21 and this new 0.44.

Now we can devise the following iterative scheme. Given a problem with no delay
(	t0 = 0), use our algorithm to compute estimates for b and x0. This can be done as
in Examples 1 and 2. ρc (and hence a) may be calculated from the computed b value.
Once a and x0 are calculated, a new 	t is calculated using (58):

	tn+1 = F∗a(	tn)x0(	tn) ≡ F(	tn), (59)

where we have chosen F∗ = 1/3. This iteration should then have a fixed point 	t∗
which will give better estimates for b and x0 than 	t = 0. Unfortunately, we have
found that the iterative scheme in (59) has very slow convergence, with oscillations
about the fixed point 	t∗. Thus we replace the scheme (59) with

	tn+1 = (1 − ω)F(	tn) + ω	tn . (60)

(Note that fixed points of (60) are fixed points of (59).) We took ω = 1/2 to speed
convergence. We found that, typically, after 3–5 iterations the 	tn’s stabilized.

Below we have two examples where we have used this delay procedure. We evaluate
a residual error for the current outputs for each case;

Residual =
∑

i |IData(ti ) − IAppx(ti )|∑
i |IData(ti )|

where ti are the data points.

Example 3 (Simulated with 1,600 channels) Figure 4 displays our results for data
created from a delta function distribution located, as in Example 1, at 1.7 × 10−3 cm
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Fig. 4 Example 3 simulated data case. Here Cb = 40 µM and L = 5.0 × 10−3 cm

and with 1,600 channels. The location and channel count found with delay 	t = 0 s
was x̃0 = 2.1 × 10−3 cm with 4993 channels. However, 4 steps of the delay iteration
procedure we found 	t = 5.76 × 10−3 s and an accurate estimate of the channel
distribution with x̃0 = 1.66 × 10−3 cm with 1685 channels. Figure 4 reveals the
significant improvement in the residual by using this delay procedure. The residual
for the 	t = 0 case was 0.137 while, after the iteration, with 	t = 5.76 × 10−3 was
0.012; which is a tenfold improvement.

Example 4 (Real Data from the Kleene Lab) Figure 5 displays our results for real
data using the iteration scheme with 3 iterations. The cilium in this example was
7×10−3 cm and we had Cb = 20 µM. Again the delay iteration produced an improved
approximation with final 	t = 5.17×10−3 s. Here we had x̃0 = 1.70 ×10−3 cm and
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Fig. 5 Example 4 real data case. Here Cb = 20 µM and L = 7.0 × 10−3 cm
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1385 channels. The residual for the 	t = 0 case was 0.099 while, after the iterations,
the residual was 0.040 and the calculated delay was 	t = 5.17 × 10−3.
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Appendix

Now we use typical physical parameters to estimate our dimensionless parameters. The
references for the physical constants throughout are [2] and [3]. We choose Cb = 30
µM from the following range of values used in experiments:

5 µM ≤ Cb ≤ 300 µM.

For K1/2 and n, we have

K1/2 = 1.7 µM and n = 1.7.

Thus, ε is

ε =
(

K1/2

Cb

)n

= 7.60 × 10−3.

In order to calculate the characteristic current Ic, we need the following parameters:

Vb = 50 mV = 5 × 10−2 V, and Ra = 1.49 × 1011 �

cm
.

In the calculation of Ra, we note that the intracellular resistance is given by Ra = Ri/A,
where A is the cross-sectional area. The intracellular resistivity Ri is known to be 91.7
�-cm. We took the diameter of the cilium to be 2.8×10−5 cm. We chose L = 3×10−3

cm from the following experimental range:

3 × 10−3 cm ≤ L ≤ 10 × 10−3 cm.

Then for the characteristic current we have

Ic = Vb

Ra L
= 112 pA.

For the characteristic density, experimental values range between

1.4 × 105 channel

cm
≤ ρc ≤ 106 channel

cm
.

Again, we use a typical value, ρc = 3 × 105 channels/cm (900 channels).
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To calculate b, we also need the following values, given in the text: gCNG = 8.3 ×
10−12(� · channel)−1 and P = 0.7. We thus obtain the following value for b:

b = Ra L2gCNG PVbρc = 2.35.

We may calculate the characteristic time scale once we have the following value:
D = 2.7 × 10−6 cm2/s. Thus

tc = L2

D
= 3.33 s.

Note that this value is somewhat long compared to the time scale evident in the
numerical simulations, but right on par with the physical experiments.

To calculate a, the only remaining parameter we need is α, which is given by

α = 1

NA A
= 2.7 × 10−6 µM · cm

molecule

where NA = 6.0 × 1023 molecules/mole is Avogadro’s number. We also assign
BS = 1.7 molecules/channel (number of binding sites needed to activate the CNG
channel current). With this we can now obtain the dimensionless parameter a,

a = αρc

Cb
BS = 4.6 × 10−2.
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