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Abstract Because surface-volume reactions occur in many biological and indus-
trial processes, understanding the rate of such reactions is important. The BIAcore
surface plasmon resonance (SPR) biosensor for measuring rate constants has such a
geometry. Though several models of the BIAcore have been presented, few take into
account that large ligand molecules can block multiple receptor sites, thus skewing
the sensogram data. In this paper some general mathematical principles are stated
for handling this phenomenon, and a surface-reaction model is presented explicitly.
An integro-partial differential equation results, which can be simplified greatly using
perturbation techniques, yielding linear and nonlinear integrodifferential equations.
Explicit and asymptotic solutions are constructed for cases motivated by experimental
design. The general analysis can provide insight into surface-volume reactions occur-
ring in various contexts. In particular, the steric hindrance effect can be quantified with
a single dimensionless parameter.
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518 D. A. Edwards

1 Introduction

Many important industrial and biological processes involve the binding of a free-
floating reactant (herein termed the ligand) to a reactant (the receptor) attached to a
two-dimensional surface, such as a cell membrane or channel wall. For instance, in
the biological realm, models of blood clots treat the vessel as a reacting wall [1,13].
Distamycin-type drugs bind to reacting sites on the surface of a much larger DNA mole-
cule [20]. Immunoglobulins are transmitted to newborns from mother’s milk through
binding to receptors on intestinal epithelial cells [25]. Antibodies bind to chemo-
kine receptors in the surface-volume geometry [15]. Gene expression is significantly
influenced by DNA-protein interactions in these geometries [28]. The transduction
of an odor into an electrical signal to the brain is accomplished by the binding of a
free-floating molecule to a receptor on a cilium in the nose [19].

On the industrial side, corrosive processes occur in such geometries [14]. In bubble
reactors, gas reacts with the liquid which impinges on the bubble surfaces [22].

Understanding such processes requires knowledge of the rate constants for any
given reaction. Real-time measurements of the binding process can be translated into
such parameters given an appropriate mathematical model. One popular device for
obtaining such data is the BIAcore, which is a surface plasmon resonance (SPR)
device.

The configuration of the BIAcore is described in great detail elsewhere [17,18,21,
28]. We present a brief review for our purposes (see Fig. 1). The BIAcore device is a
rectangular channel through which the ligand is convected in the x̃-direction in standard
two-dimensional laminar flow from x̃ = 0, the inlet position. The receptor is embedded
in a thin dextran matrix attached to the ceiling of the channel. An evanescent wave is
bounced off the channel ceiling and read by a detector. As the experiment progresses,
binding causes refractive changes to the polarized light beam. These changes, when
compared to a control state, can be translated into a sensogram of the binding [11].

Once a sensogram has been generated, an accurate mathematical model must be
used to fit the data and determine the rate constants. Though several models exist,
most omit steric hindrance effects. These occur when the ligand molecules are large
compared to the spacing of the receptors, causing a single binding event to block
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Fig. 1 Schematic of the BIAcore device
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Steric hindrance effects on surface reactions: applications to BIAcore 519

multiple receptors. Thus a naïve model which does not include the effect will tend to
underestimate the affinity constant

K̃ = k̃a

k̃d
, (1)

where k̃a is the association rate constant and k̃d is the dissociation rate constant. This
is because receptors which are merely occluded will be counted as receptors which
are available, but do not bind because of the kinetics.

The novel approach in this work is to extend previous models of the BIAcore to
include steric hindrance effects. In the next section we spell out some general consi-
derations to observe when formulating models of this type. Using some reasonable
assumptions, we then specialize to the case where the reaction zone is a surface. This
leads to an integro-partial differential equation for the bound state.

Because of the disparate length scales involved, this complicated system may be
reduced to the same functional form as the model without steric hindrance effects
included. The changes occur in certain dimensionless parameters in the problem. Such
a simplification makes it easy to analyze, interpret, and correct errors in the sensogram
data due to steric hindrance effects.

Though the results herein are presented in the context of the BIAcore, they have
wide applicability. The same occlusion effects can occur on biological surfaces, and
information about them can lead to the design of more effective pharmaceuticals. In the
industrial realm, such results can help optimize processes by providing upper bounds
on the amount of receptor needed to achieve a certain chemical result.

2 Surface steric hindrance model

2.1 General considerations

In this manuscript, we describe the reaction zone in the BIAcore as a surface. This
model holds for thin dextran layers or BIAcore products where the receptor is bound
directly to the chip surface. The standard surface reaction model can be stated as
follows:

∂ B̃

∂ t̃
= k̃a(RT − B̃)C̃(x̃, 0, t̃) − k̃d B̃, 0 ≤ x̃ ≤ L , (2)

where B̃ is the concentration of bound ligand on the surface, C̃ is the concentration of
the unbound ligand in the flow, L is the length of the channel, and RT is the total number
of receptors. Though the receptor density may initially be nonuniform [16,24] in this
work we take it to be uniform, since the error introduced from such an assumption is
small [10]. The parenthetical term in Eq. (2) is the number of receptors available for
binding, given that each binding site takes up just one receptor.

To include steric hindrance effects, we note that if the ligand molecule is large,
when it binds with one site it may occlude other neighboring sites. Therefore,
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520 D. A. Edwards

we replace Eq. (2) with the following:

∂ B̃

∂ t̃
= k̃a{RT − S[B̃]}C̃(x̃, 0, t̃) − k̃d B̃, (3)

where S[B̃] is a steric hindrance operator that measures how many receptor sites on
average are occluded by a single binding event. Clearly S[B̃] ≥ B̃.

This new operator formulation for steric hindrance effects is of course quite general.
To specialize to a form which we can actually solve, we introduce the following
additional assumptions:

1. Receptor sites are considered to be points, spaced evenly on the sensor surface at
a distance dr from one another, where the subscript “r” stands for “receptor”.

2. Ligand molecules are considered to have only one specific binding site centered in
the structure. The structure is considered to be of characteristic size dl, where the
subscript “l” stands for “ligand”. In practice, dl will be taken as twice the Stokes
radius.

3. As the experiment progresses, molecules will form an optimal packing arran-
gement. This is probably the most controversial assumption, though in the next
section we describe situations where this can occur. In any event, this assumption
will provide a lower bound on the effect (since more disordered configurations
will occlude more reacting sites).

4. In order to transition from discrete receptor sites on individual molecules to the
continuum approximation in Eq. (3), we rely upon the fact that there is a third
z̃-direction normal to the flow. This direction is always averaged away in the
measurements, and hence B̃ at some specified x̃∗ can be thought of as a propor-
tion of receptor sites at (x̃∗, z̃) which have been bound, thus yielding after some
manipulation an area concentration.

5. Because the ligand molecules are no longer considered to be points, we identify the
position of a ligand molecule by the position of its receptor site. In other words, as
described above, C̃(x̃) would be the concentration of molecules (averaged over z̃)
which have their receptor sites at x̃ .

Each of the above assumptions may introduce errors into our solution. Fortunately,
the BIAcore signal is averaged over a finite scanning range:

¯̃B(t) = 1

x̃max − x̃min

x̃max∫

x̃min

B̃(x̃, t) dx̃, (4)

where x̃min and x̃max are bounded away from the ends of the device. Since none of
the errors in the assumptions would seem to introduce a definite directional bias, the
averaging process should minimize their effect on the solution.
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Fig. 2 Schematic of two-dimensional model, top view

2.2 The two-dimensional case

Figure 2 shows a view looking down at the reacting surface. The receptor sites are
indicated by black dots, and the ligand molecule is represented as a grey disk. The
binding site is at the center of the disk, which identifies the position of the ligand
molecule. The disk can be thought of as the projection (or “shadow”) of a three-
dimensional spherical molecule onto the two-dimensional reacting surface. Thus disks
cannot overlap.

Figure 2 shows a single binding event that will render unavailable all receptors
within a radius dl from the binding site. Receptors within a radius dl/2 are directly
occluded by the ligand molecule, while receptors in the annulus between radii dl/2
and dl are unavailable due to overlap effects. We expect S[B̃] to be linear in B̃, since
(considering the averaging in the z̃-direction) we expect twice as many bound states
to occlude twice as many molecules. This discussion motivates the following model
for S:

S[B̃](x̃, z̃, t̃) = S0

dl∫

−dl

√
d2

l −x̃ ′2∫

−
√

d2
l −x̃ ′2

B̃(x̃ + x̃ ′, z̃ + z̃′, t̃) dz̃′ dx̃ ′, (5)

where S0 is a normalization factor.
Consider the aspect ratio ε = H/w, where H is the height of the channel and w

its width. From the values in the Appendix, we have that ε � 1, so to leading order
B̃ is also independent of z̃, and hence from Eq. (3) we conclude that B̃ will always be
independent of z̃.

Thus we may easily compute the inner integral in Eq. (5) to obtain

S[B̃](x̃, t̃) = S0

dl∫

−dl

2
√

d2
l − x̃ ′2 B̃(x̃ + x̃ ′, t̃) dx̃ ′. (6)
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In order to calculate S0, it is convenient to scale the problem, which for the physical
variables we do in the normal way:

x = x̃

L
, B(x, t) = B̃(x̃, t̃)

RT
. (7a)

The importance of this scaling is that the dimensionless B now represents the percen-
tage of receptor sites bound. However, for the dummy variable it is more convenient
to scale by the diameter of the ligand molecule:

x ′ = x̃ ′

dl
�⇒ x̃ + x̃ ′

L
= x + δx ′, δ = dl

L
. (7b)

Substituting Eqs. (7a) and (7b) into Eq. (6), we obtain

S[B](x̃, t̃) = 2RTS0d2
l

1∫

−1

√
1 − x ′2 B(x + δx ′, t) dx ′. (8)

For the other terms in Eq. (3), we note from previous work [6] that the area of
interest is a small boundary layer above the reacting surface. The appropriate time
scale is the forward reaction time scale. Therefore, we let

t = k̃aCu t̃, y = Pe1/3 ỹ

H
, C̃(x̃, ỹ, t̃) = Cu[1 − DaC(x, y, t)], (9a)

where ỹ measures height above the reacting surface and Cu is the upstream inlet
concentration. Here Da is the Damköhler number, given by

Da = k̃a RT

D̃/(HPe−1/3)
= reaction “velocity”

diffusion “velocity” in diffusive boundary layer
, (9b)

where D̃ is the diffusion coefficient of the ligand molecules in the flow. Here Pe is the
Péclet number, given by

Pe = H2/D̃

L/V
= characteristic diffusion time in flow

characteristic convection time in flow
, (9c)

where V is a typical velocity scale.
Substituting Eqs. (7)–(9) into Eq. (3), we obtain

∂ B

∂t
=

⎡
⎣1−2S0d2

l

1∫

−1

√
1−x ′2 B(x+δx ′, t) dx ′

⎤
⎦ [1−DaC(x, 0, t)]−K B, (10a)

K = K̃

Cu
. (10b)
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Fig. 3 Poorly packed configuration

2.3 Determining the normalization factor

To determine S0, we consider a nearly irreversible reaction by taking K → 0. Since
the backwards reaction proceeds slowly, it eliminates poorly packed configurations as
in Fig. 3, working only to distribute the receptors uniformly so Assumption 3 above
holds.

We also examine the steady state of the system, starting with C . At steady state
the reaction stops, and the ligand concentration reverts to the inlet concentration Cu,
which means that Cs = 0, where the subscript “s” refers to “steady state”. (More
details of this derivation may be found in [7].)

Thus in the small-K limit, the steady state of Eq. (10a) satisfies

2S0d2
l

1∫

−1

√
1 − x ′2 Bs(x + δx ′) dx ′ = 1. (11)

Equation (11) is the mathematical statement of the chemical reality that if the reaction
is irreversible, at steady state all the receptors must be either bound or occluded.

Since we are working in the continuous limit of averaging with perfect distribution
of binding sites, Bs will be uniform. In addition, we note from the schematic in Fig. 2
that dl ≈ 2dr

√
2, and (neglecting edge effects) roughly 1/8 = (dr/dl)

2 of the receptors
would be occluded if the disks were packed optimally. So as long as dl ≥ dr, the
proportion of receptors bound at steady state is given by (dr/dl)

2.
For reasons that will become clear later, it is easier to work with the inverse of this

quanitity, which we denote by p. So we have Bs = p−1, where

p = max

{
d2

l

d2
r
, 1

}
. (12)

Here we use the maximum to take into account the case where the ligand size is smaller
than the receptor spacing.
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In order to apply our theory to a particular experiment, we must know the value
of p. dl is readily obtainable from the Stokes radius for the ligand molecule, which
can be estimated using gel filtration techniques [12] or size exclusion chromatography
[27]. For dr, we note that the area density of molecules is just given by N RT, where N
is Avogadro’s number. Then the average area occupied per molecule is just (N RT)−1.
Assuming a uniform square lattice, this means that the spacing between molecules is
just the square root of that quantity, so

dr = (N RT)−1/2 �⇒ p = max{d2
l N RT, 1}. (13)

Thus p is directly proportional to RT and hence can be controlled in an experiment.
Substituting our expression for Bs into Eq. (11), we obtain a value for S0. Substi-

tuting this result into Eq. (8), we obtain

S[B](x, t) = 2RT p

π

1∫

−1

√
1 − x ′2 B(x + δx ′, t) dx ′. (14)

2.4 Additional considerations

Substituting our form for S0 into Eq. (10a) yields the full evolution equation for the
hindered case:

∂ B

∂t
=

⎡
⎣1 − 2p

π

1∫

−1

√
1 − x ′2 B(x + δx ′, t) dx ′

⎤
⎦ [1 − DaC(x, 0, t)] − K B. (15)

One can envision a situation where a ligand molecule binds very close to the end of
the receptor surface, and hence the entire disk surface need not be considered in the
occlusion process. Fortunately, because the scanning range is bounded away from the
ends of the device, such a situation would not affect the analysis.

To complete our model, we need several more pieces of information. First, we
must have an initial condition for B, which we assume uniform (It will be zero for an
association experiment, and the steady state otherwise). Thus we have

B(x, 0) = Bi, (16)

where Bi is considered to be an O(1) constant.
We also need an expression for C . Since steric hindrance effects do not affect the

transport of ligand, we may quote the result from [9], which considers the surface
reaction case:

C(x, 0, t) = 1

31/3Γ (2/3)

x∫

0

∂ B

∂t
(x − x ′, t)

dx ′

x ′2/3 . (17)
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This result is obtained using the same sort of geometry and flux balance as in the Ward–
Tordai model [26,29]. In particular, there is a thin boundary layer above the reacting
surface which is taken to be semi-infinite, and diffusive flux normal to the surface is
balanced with the increase in B. However, it differs from the standard Ward–Tordai
model in that it uses an advection–diffusion equation for C , incorporating flow in the
transverse direction.

Since C as scaled represents the deviation from the inlet value, Eq. (17) states that
this deviation at position x is simply the accumulation of depletion effects upstream
(0 < x ′ < x), modified by an integral kernel that takes into account flow effects.

From the Appendix we have that δ � 1. Thus expanding the integral in Eq. (15)
for small δ, we obtain

∂ B

∂t
=

(
1 − pB + δ2 p

8

∂2 B

∂x2

)
[1 − DaC(x, 0, t)] − K B. (18)

3 Small Da

3.1 Association experiment

Scientists attempt to minimize the effects of transport on their experiments. This cor-
responds to the mathematical case of small Da. Therefore, we introduce the following
perturbation series in Da for B:

B(x, t) = B0(x, t) + DaB1(x, t) + o(Da). (19)

Motivated by the form of Eq. (18), we assume that δ2 = O(Da) to obtain a dominant
balance. Substituting Eq. (19) into Eqs. (18) and (16) and keeping terms to leading
two orders, we have

∂ B0

∂t
+ αB0 = 1, B0(x, 0) = Bi; α = K + p, (20a)

∂ B1

∂t
+ αB1 = δ2 p

8Da

∂2 B0

∂x2 − Cf(x, 0, t)(1 − pB0), B1(x, 0) = 0. (20b)

The only difference between Eq. (20a) and the leading-order equation in previous
studies is the redefinition of the parameter α [5]. Since this is the only change, we can
easily see how neglecting steric hindrance can affect our results (at least to leading
order). In particular, if we ignore steric hindrance effects when analyzing our data,
then the estimated value deviates from the true value in the following way:

Kestimated = Ktrue + p − 1. (21)

Therefore, the absolute error will be most apparent when Ktrue is small. Since K
depends on Cu and p depends on RT, that means this error is controllable in an
experiment, even if the exact diameter of the ligand molecule is unknown.
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Solving Eq. (20a), we obtain

B0(x, t) = 1 − e−αt

α
+ Bie

−αt . (22)

Note from Eq. (22) that the true physical time scale for the problem is essentially
measured as a reciprocal of α.

There are several ramifications of the fact that B0 is independent of x . First, the
measured quantity indicated in Eq. (4) is simply given by B0 itself:

B̄0(t) = B0 = 1 − e−αt

α
+ Bie

−αt . (23)

Second, to leading order we may factor ∂ B/∂t from the integrand of Eq. (17) to obtain

C(x, 0, t) = dB0

dt
h(x), h(x) = 32/3x1/3

Γ (2/3)
. (24)

Third, since B0 is independent of x , the p term in Eq. (20b) vanishes. Hence, any
change to the solution because of such nonuniformities must occur at O(Da2).

Substituting this result, Eqs. (22), and (24) into Eq. (20b) and solving, we have the
following:

B1 =
[
(e−αt − 1)pχ

α
− K t

]
χe−αt h(x)

α
, χ = 1 − αBi. (25)

Note that this expression is similar to the result in [5], except for the additional p
coefficient. Then averaging to obtain a result consistent with the BIAcore signal, we
have

B̄1 =
[
(e−αt − 1)pχ

α
− K t

]
χe−αt h̄

α
, h̄ =

35/3
(

x4/3
max − x4/3

min

)

4Γ (2/3)(xmax − xmin)
, (26)

where we have used Eq. (24).
Note that Eq. (26) has a term that behaves like te−αt , which is similar in form to a

secular term in a two-timing problem. Of course, due to the fact that B0 approaches
an O(1) steady state, DaB1 � B0 for all t , and so technically the expansion does not
fail at this order. Nevertheless, this is still a secular form. The standard way to fix such
a problem is to introduce a multiple-scale expansion, as in [8]. This reference shows
that though it is possible to construct such an expansion, it will not be illuminating.

3.2 Effective rate constant solution

Instead, we restate our results in the effective rate constant (ERC) context, which
presents a simple ODE model for the actual sensogram data B̄. Substituting Eq. (24)
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Table 1 Parameters for
Figs. 4–7 [6]

Parameter Value Parameter Value

Bi 0 t 10−3 t̃/s

Cu (mol/cm3) 10−11 xmax 7.92 × 10−1

Da 10−1 xmin 2.08 × 10−1

k̃a(cm3mol−1s−1) 108

into Eq. (18), we have

∂ B

∂t
=

(
1 − pB + δ2 p

8
Da

∂2 B1

∂x2

)[
1 − Da

dB0

dt
h(x)

]
− K B + O(Da2).

Since B0 is independent of x , we may manipulate the above and average it over the
scanning range to obtain

d B̄

dt
= 1 − α B̄

1 + Da(1 − pB̄)h̄
+ O(Da2), (27)

where we have used our assumption about the size of δ2 to construct our order estimate.
Note that with the exception of the redefinition of α and the new p term, this is exactly
the same result as obtained in the case without steric hindrance [6].

We now present some graphs of our results. As discussed above, the effect of p �= 1
will be different depending on the size of K . Therefore, we present two sets of graphs;
one for K = 1 (the default value used for previous papers, cf. [7]) and one for K large.
Note that this involves varying k̃d, since the other parameters are fixed in Table 1
above. From a physical point of view, we vary p simply by varying dl; we keep RT
fixed to fix dr.

Figure 4 shows the solution of the ERC equation with K = 1 (used in previous
work) with various p. Because of the form of Eq. (20a), the graphs for K < 1
are similar, since in both cases the variation due to p dominates. Note that both the
maximum value attained and the time scale needed to reach the maximum decreases
as p−1.

Figure 5 shows the same graphs as in Fig. 4, but for K = 10. Since K is now larger,
the effect of increasing p is not as pronounced, though it is still significant.

3.3 Dissociation experiment

In a typical BIAcore experiment, a dissociation run is initiated once the association
run has reached steady state. From Eq. (17) we see that as t → ∞, C(x, 0, t) → 0,
so using the same arguments in Sect. 3.1, one can determine that the steady state of
Eq. (15) is

Bs = 1

α
. (28)
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Fig. 4 Solution of Eq. (27) with K = 1 and (in decreasing order of thickness) p = 1, 2, 4, 8, and 16
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Fig. 5 Solution of Eq. (27) with K = 10 and (in decreasing order of thickness) p = 1, 2, 4, 8, and 16

Equation (28) provides the initial condition for the dissociation problem, and hence
we are justified by always taking the initial condition for B to be spatially uniform, as
postulated in Sect. 2.4.

In addition, the ligand concentration is shut off, so the equation analogous to
Eq. (15) is

∂ B

∂t
=

⎡
⎣1 − 2p

π

1∫

−1

√
1 − x ′2 B(x + δx ′, t) dx ′

⎤
⎦ [−DaC(x, 0, t)] − K B. (29)

Expanding Eq. (29) for small δ and Da, we obtain, to leading two orders,
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∂ B0

∂t
+ K B0 = 0, B0(x, 0) = α−1, (30a)

∂ B1

∂t
+ K B1 = −(1 − pB0)C(x, 0, t), B1(x, 0) = 0. (30b)

Solving Eq. (30a), we have the following:

B0(x, t) = B̄0(t) = e−K t

α
. (31)

Since Eq. (24) does not change, we may substitute it and Eq. (31) into Eq. (30b) to
obtain

B1 = K

α

[
t + p(e−K t − 1)

Kα

]
h(x)e−K t . (32)

Note this expression is similar to [8, Eq. (3.21b)] (where no steric hindrance effects
are present), except for the addition of the new parameter p. Then averaging, we have

B̄1 = K

α

[
t + p(e−K t − 1)

Kα

]
h̄e−K t , (33)

where h̄ is given in Eq. (26). Note that we have the same secularity problem, more
obvious now because the steady state is now zero, so the second term really is larger
than the first.

The effective rate constant work may also be replicated for the dissociation case.
Substituting Eq. (24) into Eq. (29) and expanding for small δ yields the following:

d B̄

dt
= −K B̄

1 + Da(1 − pB̄)h̄
+ O(Da2). (34)

in an analogous way to that used to derive Eq. (27).
Figures 6 and 7 are analogous to Figs. 4 and 5, but for the dissociation case. As in

the previous subsection, the effect of varying p is most pronounced when K is small.

4 Moderate Da

Occasionally, the material parameters are such that Da cannot be forced small. This
occurs when the reaction is very fast, or when RT must be set large so that the sensogram
signal swamps any noise in the measurements.
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Fig. 6 Solution of Eq. (34) with K = 1 and (in decreasing order of thickness) p = 1, 2, 4, 8, and 16
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Fig. 7 Solution of Eq. (34) with K = 10 and (in decreasing order of thickness) p = 1, 2, 4, 8, and 16

4.1 Association experiment

Substitution of Eq. (17) into Eq. (18) yields a nonlinear problem. Therefore we are
forced to resort to small-time asymptotics by assuming a solution of the form

B(x, t) = Bi + β(x)t + o(t). (35)

Substituting Eqs. (17) and Eq. (35) into Eq. (18) and rearranging, we have, to leading
order in t ,

χ − β = Da(1 − pBi)

31/3Γ (2/3)

x∫

0

β(x − x ′, t)
dx ′

x ′2/3 . (36)
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By defining

I[β; x] ≡
x∫

0

β(x ′) dx ′, (37)

we may write the average in dimensional terms with the aid of Eq. (9a):

B̄(t̃) ∼ Bi + St̃, t̃ → 0,

S = k̃aCu{I[β; xmax] − I[β; xmin]}
xmax − xmin

. (38)

Using Laplace transform techniques, one finds that I for the solution of Eq. (36) is

I[β; x] = χe−νa x

νa

[
eνa x − 1 − |P(4/3,−νax)| + |P(5/3,−νax)|] , (39)

νa = 1

3

[
Da(1 − pBi)Γ (1/3)

Γ (2/3)

]3

, (40a)

where the subscript “a” refers to “association experiment” and P is the normalized
lower incomplete gamma function whose definition is

P(m/3,−νax) = γ (m/3,−νax)

Γ (m/3)
. (40b)

This is simply the result without steric hindrance effects [5] with new values of χ and
νa.

In order to calculate both rate constants, we proceed as follows. By simply running
the experiment to steady state, we obtain an estimate for α, and hence K . Next we
construct a linear fit to our small-time data. Once we have that slope S, we solve
Eq. (38) to obtain k̃a. It is important to note that the relationship is not linear, since S
also depends on k̃a through the parameter Da. Then using our value for K , we may
calculate k̃d.

p enters into Eq. (39) only as a coefficient of Bi (both in χ and νa). Since in
the association problem Bi = 0, p does not play a role. Physically, since we are
examining short-time solutions, there hasn’t been enough time for site exclusion to
have a significant effect.

Thus our solutions behave exactly the same as in [5]. In particular, we quote the
small- and large-k̃a asymptotes, which correspond to slow and fast reactions. When
the reaction is slow, we obtain

S ∼ k̃aCuχ, k̃a → 0. (41)

Equation (41) merely shows that if there is no forward reaction (k̃a = 0), then there
will be no change in the bound concentration from the initial state (S = 0).
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For the large k̃a asymptote, we have that

S ∼
34/3CuV 1/3 D̃2/3

(
x2/3

max − x2/3
min

)

2Γ (1/3)RT L1/3 H1/3(xmax − xmin)
, k̃a → ∞. (42)

Equation (42) simply states that as the reaction speed becomes infinitely fast, the
sensogram data will approach a finite slope, as transport becomes the limiting factor.

4.2 Dissociation experiment

We conclude with a discussion of the dissociation case. As stated previously, the initial
condition here is the steady state from the association problem given in Eq. (28).
Thus Eq. (30a) holds even if we drop the subscript 0. In addition, the leading-order
concentration is now 0, not 1. Hence the equation analogous to Eq. (36) becomes

β + K

α
= − Da(K/α)

31/3Γ (2/3)

x∫

0

β(x − x ′, t)
dx ′

x ′2/3 . (43)

Examination of Eq. (43) shows that the only structural change we have made is to
replace χ by −K/α on the left-hand side. All the other changes are simply changes
to the parameters. Thus we have that I is given by

I[β; x] = − K e−νdx

νdα

[
eνdx − 1 − |P(4/3,−νdx)| + |P(5/3,−νdx)|] , (44a)

νd = 1

3

[
Da(K/α)Γ (1/3)

Γ (2/3)

]3

, (44b)

where the subscript “d” refers to “dissociation experiment”. Note that the slope is now
negative, as is correct for our dissociation problem.

Our solution depends on p through α, which appears in the initial condition and in
ν. Since the rate constant k̃a also appears in ν, we fix a value of k̃d, not K , to evaluate
the steric hindrance effects in this case. Thus we will choose a series of k̃d values to
see how the solution depends on p for each one. We expect the results to be most
pronounced at small values of K , which correspond to small values of k̃d. The first
value we choose is the one in [7]:

k̃d = 8.9 × 10−3

s
. (45)

The other parameters listed are in Table 2; k is a variable defined for convenience.
Figure 8 shows the graph of |S| versus k̃on for various values of p. Note that

increasing p reduces the initial speed of dissociation, with the most dramatic trends
occurring as k̃a gets large, since with larger k̃a, the inherent time scale of our problem
decreases.
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Table 2 Additional parameter
values for Figs. 8, 9 [6]

Parameter Value Parameter Value

D (cm2/s) 2.8 × 10−7 Pe 3.71 × 102

H (cm) 5 × 10−3 RT(mol/cm2) 10−12

k 10−9kamol · s/cm3 V (cm/s) 1

L (cm) 2.4 × 10−1

0.0005

0.001

0.0015

0.002

–3 –2 –1 1 2 3

Fig. 8 |S| versus log10 k with k̃d as defined in Eq. (45) and (in decreasing order of thickness) p = 1, 2, 4,
8, and 16

To obtain the small-k̃a asymptote of the graph, we first note that

lim
k̃a→0

K

α
= 1, (46)

since with k̃d fixed, k̃a → 0 forces K → ∞. Thus from Eq. (44b) we see that small k̃a
will correspond to small νd and we can use the asymptote from the association case,
simply replacing χ by −K/α in Eq. (41), which yields

S ∼ −k̃aCu, k̃a → 0. (47)

This result is independent of p. The effects of blocking from the association experiment
are built into the initial condition. Hence for small time, any blocking effects from
rebinding in the dissociation experiment have not yet had an opportunity to develop.

Next we examine the large-k̃a asymptote. First, we derive the following useful limit:

lim
k̃a→∞

νd = 1

3Pe

[
Γ (1/3)

Γ (2/3)

R̃T H

D̃

k̃d

Cu p

]3

. (48)
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0

0.0005

0.001

0.0015

0.002

0.0025

–3 –2 –1 1 2 3

Fig. 9 |S| vs log10 k with k̃d as defined in Eq. (49) and (in decreasing order of thickness) p = 1, 2, 4, 8,
and 16

Therefore, just as in [7], νd no longer becomes unbounded as k̃a does. We do see that
its final value decays as p−3. Therefore, larger values of p will correspond to smaller
values of νd. This will drive down the value of the asymptote, as shown in Fig. 8.

As in Sect. 3.3, we now wish to change k̃d and see how the variance with p changes.
In that section, we increased K by a factor of 10. Therefore, to achieve the same result
in this context, we increase k̃d by a factor of 10:

k̃d = 8.9 × 10−2

s
(49)

and display the results in Fig. 9. Note that just as in Sect. 3.3, the effects of p are
mitigated with increasing k̃d. This is because dissociation plays a larger role in the
reaction, and dissociation is unaffected by steric hindrance.

5 Discussion and further research

Many biological and industrial processes include surface-volume reactions. Unders-
tanding the rates of the underlying kinetic processes is thus essential. The BIAcore
SPR device provides an excellent way to obtain real-time observations of binding
processes, but such data is useless for parameter estimation without the necessary
mathematical models to interpret it. Though many models ignore this, when ligand
molecules are larger than the spacing of the receptor molecules on the surface, a single
binding event can occlude multiple binding sites. Without taking this steric hindrance
effect into account, one will obtain inaccurate overestimates of the affinity constant
K̃ .

We presented a general model to handle such effects in Sect. 2.1. Though we made
some crude simplifying assumptions to obtain a tractable set of equations, the errors we
make should be unbiased. Thus the fact that the BIAcore signal averages the binding
along the channel length should reduce any errors associated with these assumptions.
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When applied to the two-dimensional surface reaction case, the result is an integro-
partial differential equation involving the operator S[B], which models the effect of
binding on neighboring receptor sites. Fortunately, due to the large discrepancy in size
between the molecules and the channel (captured in the dimensionless parameter δ),
the system simplifies.

Scientists prefer to work in the regime where Da is small to limit the effects of
transport; we produced an ERC solution which is accurate to O(Da2). In the more
complicated case where Da is moderate, we can obtain only a short-time solution
analytically. Both association and dissociation experiments were considered.

In simplified form, the steric hindrance effect is encapsulated in the parameter p,
which measures the ratio of the occluded areas of ligand to receptor. Though the
effect can most easily be seen in Eq. (21), the parameter p propagates throughout
our solutions. The dependence of p on dl is quadratic while the dependence on RT
is linear, and hence dl is the dominant factor in determining whether or not blocking
will occur.

The wide range of p values illustrated in the Appendix shows that steric hindrance
effects cannot be eliminated simply by increasing the spacing between receptors.
Since RT must be kept at a relatively high level to distinguish the BIAcore signal
from experimental noise, there are ligand molecules that will remain larger than any
feasible spacing.

If such effects cannot be obviated, how may they be minimized? First, as mentioned
above, reducing RT (and hence increasing the receptor spacing dr) will reduce p, and
thus the absolute steric hindrance effect. The relative size of the steric hindrance effect
may be reduced by increasing K , as seen in Eq. (21). Since K is the ratio of the true
affinity constant K̃ to Cu, it may be increased by decreasing Cu.

Many BIAcore experiments use a dextran gel as the reaction zone. The three-
dimensional effects this introduces are only complicated by the fact that dl can be of
the same size as the gel thickness [6]. Such a model will necessarily be more involved,
and is the object of further research.

Nomenclature

Variables and parameters

Units are listed in terms of length (L), mass (M), moles (N ), or time (T ). If the same
letter appears both with and without tildes, the letter with a tilde has dimensions, while
the letter without a tilde is dimensionless. The equation where a quantity first appears
is listed, if appropriate.

B̃(·, t̃): bound ligand concentration at position and time t̃ , units N/L2 (2).
C̃(x̃, ỹ, t̃): unbound ligand concentration at position (x̃, ỹ) and time t̃ , units N/L3

(2).
D̃: molecular diffusion coefficient, units L2/T (9b).
d: spacing between molecules, units L .

Da: the Damköhler number, which measures the ratio of reaction and diffu-
sion effects, dimensionless (9b).
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H : height of flow channel, units L .
h(x): function used in effective rate constant solution (24).

I[β; x]: integration operator, defined in Eq. (37) as

I[β; x] ≡
x∫

0

β(x ′) dx ′.

K̃ : affinity constant, units N/L3 (1).
k̃d: dissociation rate, units T −1 (1).
k̃a: association rate, units L3/(N T ) (1).
L: length of the channel, units L (2).
N : Avogadro’s number, units N−1.

P(·, ·): normalized lower incomplete gamma function (40b).
p: area ratio of ligand to receptor molecule (12).

Pe: Peclét number for the system (9c).
RT: receptor sites, units N/L2 (2).

S[·]: steric hindrance operator (3).
S: slope of sensogram data for small time, units T −1 (38).
t̃ : time, units T (2).

V : characteristic flow velocity, units L/T (9c).
w: width of channel, units L .
x̃ : length along the channel, units L (2).
ỹ: height above reacting surface, units L (9a).
Z: the integers.
z̃: distance perpendicular to flow, units L .
α: dimensionless constant, defined as K + p (20a).

β(x): term in expansion of B(x, t) for small t (35).
Γ (·): complete gamma function (17).

δ: ratio of ligand radius to length of channel (7b).
ε: aspect ratio of cross section.
ν: dimensionless parameter in moderate Da case (40a).
χ : dimensionless constant, value 1 − αBi (25).

Other notation

a: as a subscript on ν, used to indicate the association experiment (40a).
d: as a subscript on ν, used to indicate the dissociation experiment (44b).
i: as a subscript, used to indicate an initial condition (16).
l: as a subscript, used to indicate the ligand.

max: as a subscript, used to indicate the right endpoint of the scanning range (4).
min: as a subscript, used to indicate the left endpoint of the scanning range (4).

n ∈ Z: as a subscript, used to indicate a normalization factor (5) or an expansion
(19).

r: as a subscript, used to indicate the receptor.
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s: as a subscript, used to indicate the steady state.
u: as a subscript on C , used to indicate a characteristic value (9a).
¯ : used to denote the BIAcore signal, which is the mean of the bound concen-

tration (4).
′: used to indicate a dummy variable (5).

Appendix

We conclude by discussing the calculation of certain parameters useful for our analysis.
Using the value of H from Table 2 and the value of w from Table 3, we have that

ε = H

w
= 0.1, (50)

and hence we are justified in taking it to be a small parameter in Sect. 2.2.
To calculate an upper bound for the parameter δ, we use the value of dl from [31]

cited in Table 3, as well as the value of L cited in Table 2 to obtain

δ = dl

L
= 2.08 × 10−4. (51)

Therefore, as modeled, we are always in the small-δ limit.
Lastly, we examine the quantity d2

l N RT (which is equal to p if it is greater than 1)
in various experimental cases. Using the relatively small value for RT from [31] cited
in Table 3, we have the following range:

2.06 × 10−2 ≤ d2
l N RT ≤ 9.79 × 101, (52a)

where we have used the extremal values of dl cited in Table 3. If instead we use the
range of values for RT given in [30], we have

7.94 × 10−2 ≤ d2
l N RT ≤ 6.02 × 103. (52b)

Table 3 Parameter values from
the literature. Note that dl is a
diameter, while most papers
quote the Stokes radius

Reference Parameter

dl RT w

(10−6 cm) (10−12 mol/cm2) (10−2 cm)

[2] 5

[3] 0.4

[4] 0.726–1.19

[23] 2.9

[30] 0.25–4

[31] 50 0.065

[32] 1–1.24
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