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In certain polymer-penetrant systems, nonlinear viscoelastic effects dominate 
those of Fickian diffusion. By introducing a dependence of the chemical potential 
on concentration history, this behaviour can be modelled by a memory integral. 
The mathematical framework presented is a moving boundary-value problem 
where the boundary separates the polymer into two distinct states: glassy and 
rubbery. In each region, a different operator holds at leading order. The problem 
which results is not solvable by similarity solutions, but can be solved by 
perturbation and integral equation techniques. By introducing a new model where 
the diffusion coefficient changes with phase, asymptotic solutions are obtained 
where sharp fronts initially move like d. This 'super-Case II' behaviour is found 
in various non-Fickian polymer-penetrant systems. 

1. Introduction 

Recently, engineers and scientists have found many uses for polymers and other 
synthetic materials, revolutionizing entire industries and creating new ones. This 
sudden explosion in the development of these materials has thrust materials 
science to the forefront of mathematical research, especially since modelling of 
the dynamics of synthetic materials is a relatively new field. Though there are 
uncertainties among chemical engineers and materials scientists as to the exact 
physical mechanisms involved, all agree that the standard Fickian flux 1 = 
-D(C)VC, where C is the concentration and D(C) is the second-order 
diffusion tensor, is not general enough to model the desired behaviour 
accurately. It is also a growing consensus that some sort of viscoelastic effect is as 
important as molecular diffusion in the dynamics of many of these materials. 

These new materials hold astounding promise. Microlithographic patterning 
using polymer substrates has emerged as a major technology (Thompson et al., 
1983). New types of adhesives will adhere more while weighing less (Martuscelli 
& Marchetta, 1987; Shimabukuro, 1991). 'Smart' polymer gels and synthetic 
polymers will forever change how doctors administer medicine, as they allow 
internal or external on-site administrations (Tarche, 1991; Roseman & Mansdorf, 
1983; Langer, 1990; Paul & Harris, 1976). Polymer films have great value in 
protective clothing, equipment, and sealants (Vrentas et al., 1975). 

49 
0 Orlon! Uolven11y Press J99S 



50 DAVID A. EDWARDS AND DONALDS. COHEN 

Polymer-penetrant systems are particularly interesting since much of the 
observed behaviour is inconsistent with a purely Fickian diffusion model. For 
instance, unless pathological conditions are met, moving Fickian fronts always 
proceed with speed proportional to ,-½_ However, in so-called super-Case II 
diffusion in polymers, concentration fronts propagate with speed proportional to 
T½ (Crank, 1976; Vieth, 1991; Jacques et al, 1974). It is the special behaviour of 
these super-Case II fronts that we wish to model. These fronts are usually sharp, 
and often the concentration flux into the phase change boundary is less than the 
concentration flux out! Though the concentration fronts are sharp, there is no 
discontinuity in C as has been observed in other, more standard chemical systems 
(Crank, 1984). 

The polymers we wish to study can occupy one of two phases: glassy or 
rubbery. In the glassy state, the polymer has a finite relaxation tim~. associated 
with the length of the polymer in relation to the entanglement network. Thus, in 
any effective model there will be a hereditary integral term associated with the 
'memory' of the polymer with respect to its material history. In the rubbery state, 
the polymer swells, making the relaxation time almost instantaneous. Hence, such 
memory effects are much smaller in the rubbery state. 

In order to incorporate this more complicated behaviour into the model, 
Edwards & Cohen {1995a) have proposed the following much more general 
model for the flux: 

J = - ii Dn(C)V LL., ~[C(x', T')]~[i-i', T-T', C(x', T')] di dx', (1.1) 

where the Dn are second-order tensors, the ~ are general differential operators 
on C which model the dependency of J on different dynamical processes, and the 
~ are general nonlinear hereditary kernels. Each term in the expansion 
represents a flux contribution from a different source, such as molecular diffusion 
or viscoelastic effects. Therefore, (1.1) is general enough to model accurately 
many types of anomalous diffusive behaviour. Furthermore, note that if we let 
~ = 51nC(i', T') and ~ = 51n5(i - i', T-T') we obtain the Fickian diffusion 
flux. 

Experimentalists note several important properties in the polymer-penetrant 
systems which we wish to study. The polymer is affected by past values of the 
concentration and its time derivative {Thomas & Windle, 1978, 1982; Durning, 
1985), which indicates that both terms should be in our functionals ~- By 
substituting proper functional forms into (1.1), Edwards & Cohen {1995a) derive 
the following system of partial differential equations: 

C;= V · [D{C)VC + E(C)Vu], 

u;+ f3(C)u = f(C, C,). 

(1.2a) 

(1.2b) 

In equations (1.2), u is simply a mathematical artifice introduced to simplify what 
would be a highly nonlinear partial integrodifferential equation into two coupled 
partial differential equations. However, note that equation (1.2b) is in the form 
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of an evolution equation for viscoelastic stress. In addition, the additional 'forces' 
on the system that are caused by a term of the form of ff can be thought of as 
analogous to those caused by the trace of an actual mechanical stress tensor. 
Therefore, for purposes of analogy and heuristic physical interpretation only, we 
will refer to ff as a 'stress'. 

Simplified forms of (1.2) have been studied in the past by Cohen and his 
colleagues, though none attempted a moving boundary problem. In addition, the 
contribution in this paper reflects the first time that an asymptotic analysis has 
been done on a moving boundary problem where the diffusion coefficient has 
been allowed to vary nonlinearly with concentration. 

Cohen & White (1989, 1991) eliminate the dependence of f on C;. They 
perform steady-state analyses on a finite domain and trace the position and 
stability of a moving front. Cox (1988) and Cox & Cohen (1989) perform 
asymptotic analyses and numerical simulations of equations (1.2) on a finite 
domain holding some of the variable parameters fixed, obtaining long-time 
Fickian profiles. In addition, they add convective terms to (1.2a) and use phase 
plane analysis to find travelling wave solutions. Hayes (1990) and Hayes & 
Cohen (1992) add a bimolecular reaction term to (1.2a). In addition to solving for 
travelling wave solutions, they solve (1.2) on a finite domain numerically and 
using perturbation methods. In some of these solutions they find shocks in the 
solution profiles. Cohen et al. (1995) extend the work of Cohen & White to 
multiple dimensions. A multivalued solution which satisfies an· ordinary 
differential equation formulation is presented; in addition, a rule is stated which 
allows one to determine the position of a shock in the multivalued solution. 

Edwards & Cohen (1995a,b) and Edwards (1994, 1995) have studied this model 
in the context of a moving boundary-value problem. However, in that previous 
work only f3(C) was allowed to vary across the front. Though this allowed 
modelling which incorporated some features of non-Fickian transport, the authors 
were unable to replicate super-Case II behaviour. In contrast, in this paper we 
shall allow f3(C) and D(C) to vary discontinuously across the front, indicating 
distinct values in the glassy and rubbery regions. By allowing the diffusion 
coefficient to vary in this manner, we will be able to obtain new super-Case II 
results where the front moves proportional to 7i. 

The moving boundary-value problem which ensues is not solvable by similarity 
solutions. In addition, it does not involve matching two different parameter 
values; rather, it involves matching solutions resulting from two different 
operators. Hence, we rely upon an integral method developed by Boley (1%1) 
which gives solutions which are not in closed form. In order to use such a method, 
we simplify our model, using experimental data as a guide, to determine the 
dominant physical processes in the system we wish to study. By using a 
perturbation expansion in a suitable small parameter, we obtain asymptotic 
estimates for the motion of the front and the functional form of our solution 
profiles. 

When the diffusion coefficient is allowed to vary with concentration, the 
resulting solutions replicate several additional features of polymer-penetrant 
systems. The singular perturbation problem which results leads to sharp fronts 
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moving initially with speed 1½, which we have come to associate with polymer­
penetrant systems. In addition, the stress has its maximum exactly at the phase 
transition-something not seen in previous analyses of (1.2) when the diffusion 
coefficient was not allowed to vary (Edwards, 1995; Edwards & Cohen, 1995a). 

2. Governing equations 

For analytical tractability, we consider a one-dimensional problem on a 
semi-infinite domain. By choosing a semi-infinite interval, we have eliminated 
complications that occur due to the swelling of the polymer entanglement 
network in the rubbery region. We now denote the glassy region (the region 
ahead of the front) with sub- and superscripts g and the rubbery region (the 
region behind the front) with sub- and superscripts r. By making suitable 
substitutions for fin (1.2), we obtain 

C,= [D(C)C.r + Eu.rk, (21) 

(22) 

where £, T/, and v are constants. A discussion of various physically appropriate 
forms for D(C), E(C), and f(C, C,) can be found in Cohen & White (1991). 

The term /3(C) is worthy of special attention. It is the inverse of the relaxation 
time, so its dependence on C will be important and nonnegligible. However, 
experiments have shown that variations in the relaxation time within phases seem 
to contribute little to the overall behaviour. Therefore, we average the relaxation 
time in each phase and use it as the overall value there. Thus we have 

(23) 

where C • is the value of the concentration at which the phase transition takes 
place. Experimentally it has been shown that polymers have a near-instantaneous 
relaxation time in the rubbery state, while in the glassy state these substances are 
characterized by finite relaxation times. Therefore, we see that /38 « /Jr• 

We wish to model the penetration of solute into an initially 'dry' semi-infinite 
unstressed polymer where the concentration at the boundary is a given function 
C b(7). Therefore, we have 

C(x, 0) a o, u(.f, O) mo, (24) 

for all 7 > 0. (25) 

The conditions in (2.5) guarantee that the boundary is always in the rubbery 
region. This phase discontinuity between boundary and polymer at time 1 = 0 
implies that our phase transition front s(1) must initially be at the boundary: 

s(0) = 0. (26) 
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At the front s(1), the stress and the concentration are continuous (Knauss & 
Kenner, 1980): 

C(s(T), 7) = C *' ur(s(T), 1) = ug(.s(T), 1). (2 7) 

Here we are assuming that there is a fundamental change that takes place in 
the polymer as we go from the glassy to the rubbery state; this change can be 
described as a 'phase transition' in the polymer. Experimentally, this has been 
shown to be related to a stretching of the polymer entanglement network. The 
flux used up by the polymer in this stretching is directly analogous to the energy 
used up in melting in a standard two-phase heat conduction problem. The last 
conduction at the front comes from considering the moving boundary-value 
problem as a Stefan problem: 

[(D(C.) + vE)C.r]r+ E(f3s- ~~~(s(T), 1) = aCcI'(1), (2.8) 

where Cc is the maximum of C b(T), and hence corresponds to the saturation level 
of the polymer. Note that, since f3r > 13,, we have a negative contribution to the 
left-hand side of (2.8) from the stress. Note also that the classical technique of 
seeking similarity solutions will not in general solve an equation of the form of 
(2.8). 

Here a is the phase change parameter. Equation (2.8) states that the difference 
between the flux into and out of the front is used up in the phase trans_ition. In a 
standard problem, the constant a is related to the latent heat of melting of the 
substance. Note also that we have a negative contribution to the left-hand side, 
so we cannot be assured that a is positive, as was always true in the latent heat 
formulation. In fact, in some non-Fickian systems, a decrease in the concentra­
tion gradient will slow the front. This is also consistent with taking a < 0. Like the 
latent heat in a Stefan problem, a must be known in order to solve the problem. 
However, there are experiments which can be performed to determine a, just as 
there are experiments which can be performed to determine the latent heat of a 
substance. One such experiment is outlined in Edwards & Cohen (1995b). 

More interesting is the appearance of s' in the denominator of some of our flux 
terms. This condition is highly unusual and leads to nonstandard front motion, 
especially when one considers the fact thats' may also appear in the expressions 
for the concentration and the flux. In general, the behaviour is highly complicated 
and cannot be solved by the method of similarity variables. 

In order to make the problem analytically tractable, we make one more 
simplifying assumption. As stated before, the diffusion coefficient often, though 
not always, increases dramatically as the polymer goes from the glassy to rubbery 
state. However, as with f3(C), changes within phases are less important. Hence, 
we perform the same averaging as we did with the relaxation time to obtain the 
following form for D(C): 

D(C)={D, ifO~c~c., 
Dr if C > C •. 

Since we have chosen this simplistic form, equation (2.1) may be written 

(29) 

C,= D(C)Cu + Eun. (2.10) 
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We introduce dimensionless variables as follows. We use the relaxation time in 
the glassy region, which is of the order of seconds, as our characteristic time 
rather than the much shorter relaxation time in the rubbery region. We normalize 
length by a mixture of the two scales. Summarizing, we have the following: 

_ (~)¼ _ _ (~)¼ _ C(x, l) 
X - i Dr ' t - i{Jg, s(t) - s(t) Dr ' C(x, t) - Cc ' 

Then equations (2.10), (2.2), (2.8), (2.5), (2.4), (2.7), and (2.6) reduce to 

D(C) vE 
C, =~ C;u +D CT:u, 

r r 

/3( C) T/ 
u,+--u=-C+C,, 

{Jg v{Jg 

[(D(C.) + vE)C;,], + vE(fJ;- f3r) u(s(~), t) = aD,s, 
g s 

C(0, t) = Cb(t), C(x, 0) = 0, u(x, 0) = 0, 

C(s(t), t) = c., ur(s(t), t) = u 8(s(t), t ), 

s(O) = 0, 

where the dot now indicates differentiation with respect to t. 

(2.lla) 

(2.llb) 

(2.12a) 

(2.12b) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Since {J(C) and D(C) are constant on either side of the threshold level 
C = c., we may combine equations (2.12) to yield 

C = D(C) + vE C _ f3(C) C + f3(C)D(C) + 11£ C . (2.l?) 
n D :ur fJ r D{J .u 

r a r g 

It can be shown that the operator in (2.17) holds for u as well. We now wish to 
solve these equations by using perturbation expansions in a small parameter E to 
show that these equations lead to front speed proportional to t!, sharp fronts, a 
stress maximum at the front, and other behaviour characteristic of non-Fickian 
polymer-penetrant systems. 

3. The perturbation approach 

In the previous section we noted that (31 « f3r• Therefore, we denote f3af (3, by E, 

where O < E « 1. This is a very convenient parameter with which to perform an 
asymptotic analysis. In certain polymer-penetrant systems, the diffusion 
coefficient in the rubbery region is much greater than that of the glassy region. 
This motivates the choice Dr= D0 E-

1
• We expect the effects of stress to be 

important, so we let T/ = T/oE-1 in order to yield the richest balance of terms 
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(Edwards, 1994). It will be shown that these choices for the relative magnitudes of 
our parameters will lead to solutions which replicate the desired behaviour. 

Making these substitutions in (2.17) and (2.12b ), we see that for C ~ c. we 
have the following equations: 

cs= Ea C' - cs+ (EDg + K2)cs 
n s :ur , Do xn (3.la) 

K2 
u1+u 1 =-cs+q, (3.lb) 

YE 

where K
2 = 710Elf3sDo, y = vE/Do, and as= Dg!D0 + y. Similarly, we see that in 

the rubbery region we have 

C~ = (1 + Ey)C'".u, - E-lc, + (E-I + K2)C'"_.,_.-, (3.2a) 

(3.2b) 

In addition, equation (2.13) becomes 

s( ) ) r( ) yu(s(t),t) a 1 ECx s(t, t - Cx s(t), t - . as. 
s 

(3.3) 

Note that the change in D(C) makes the concentration flux contribution from the 
rubbery region swamp that from the glassy region. 

Upon examination of equations (3.lb) and (3.2b), we postulate the following 
expansions for C and u in E: 

C = C° + o(l), Ur= ulr + o(l), 

We note immediately from the above that either u0g(s(t), t) = 0 or we have a 
maximum in the stress at the front. Inserting our expansions into (3.la), (3.2a), 
and (3.3), and retaining terms to leading order, we have the following: 

C;f'= -c,>s+ K2~ 

(;"=~ 

yuDK(s(t), t) _ . 
asEC;8(s(t), t)- ~(s(t), t) - _ - as. 

ES 

(3.4) 

(3.5) 

(3.6) 

From equation (3.4) we see that there are three separate cases to consider: 
s = K, s < K, ands> K. We restrict ourselves to the case wheres ,s; K. In order to 
consider such cases, we need to introduce boundary layer variables as follows: 

x - s(r) 
( = E"' ' 

a a m a -=--sE- -
iJt ar ac' 

r= t, 
a -m a 

-=E -
ax a( 

(3.7a) 

(3.7b) 
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Substituting equations (3.7) in equations (3.la), we have the following (to leading 
orders): 

_,,., -mr,O+ + -2m-'2r,O+ __ J-3m .r,O+ + -m -,,0+ + -2171 2r,O+ 
..lE L-(r E S-1..-({ - E a 8s1..-,u E SL-( E K 1..-,,. (3.8) 

If s = K, then it can be shown that the stress cannot be matched across the 
moving front. Therefore, we conclude that s < K. In this case, m = 1 and (3.8) 
becomes 

a,sG;, + (s2 - K
2)Cj7 = 0. 

However, we see that for s < Kt there is no bounded solution as C- 00 , which is 
the matching region for the glassy polymer. Thus, there is no layer in the 
concentration in the glassy region. Since (3.la) also holds for u 1, we see that 
there is no layer in the stress, either. So, in order to match u~ = 0(1) to 
u 8 = O(e- 1

), we need a boundary layer in the rubbery region around x = s(t). 
Introducing the scalings in (3.7) with u'(x, t) ~ E-

1u0
-({, r) and m = 1 into 

(3.2b), we have (to leading order) 

K2 
-E- 1su~-+ E- 1u 0- =-C-sc,. 

'Y 

Using the fact that u' = 0(1 ), we note that u 0
-( - oo, r) = 0. Therefore, the 

solution becomes 
(3.9) 

which decays as { __. - oo, as required. 
Substituting our scalings (3.7) in (3.2a) in order to find the boundary-layer 

equation for C(x, t) ~ C°-({, r), we have 

o = -sc<l,, + G,, 
the solution of which is, subject to our boundary condition (2.15), 

eo-a, r) = C°'(s(r), r) + [c. - C°'(s(r), r)]e'"· 

Note that in this case (3.6) becomes, to leading order, 

c-<"(s(t), t) - c. 
s 

yu0g(s(t), t) = 
0 . ' s 

(3.10) 

(3.11) 

which does not explicitly involve a. Therefore, in this case, we see that the feature 
which controls the dynamics is a balance between the two contributions to the 
flux. 

4. The integral method 

For reasons that will become clear later, we consider the case where 

C.(1 + K
2

) < 1. (4.1) 

Though we have constructed solutions using various boundary conditions for our 
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model (Edwards, 1995; Edwards & Cohen, 1995a,b), in this case we use a linear 
profile which ramps the concentration up to 1: 

C() {
C.+(1-C.)t/r ifO<t<r} . 1-C. 

b t = l if , With 0 < r < -C 2 • 
t >r •K 

(4.2) 

The restrictions on r will also become clear later. 
To solve our very complicated system, we use the integral method adopted by 

Boley (1961). In his paper, he extended the equations which held on either side of 
the front separating the two phases so that they held on the entire domain under 
consideration. Then by introducing fictitious boundary conditions which held in 
the extended part of each equation's domain, he was able to construct solutions to 
the moving boundary-value problem. Following that method, we introduce two 
new quantities P and Tr which extend each of equations (3.la) and (3.2a) to the 
full semi-infinite region. Doing so, equations (3.5), (4.2), (3.4), (2.14), (2.15), 
(3.11), and (2.16) become 

T~ = T'".u (0 <x < co), Tr._ c;or (0<x <s(t)), 

T'"(x, 0) = J;(x), T'"(0, t) = {C• + (1 - c.)t/r ~f O < t < r, 
1 If t > r, 

T'(x, 0) =0, n(x, 0) =0, 

P(s(t), t) = c., 
r(s(t), t) - yuOg(s(t), t) = c., 

s(0) = 0. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

However, since (3.10) does not provide a front condition to solve in the 
rubbery region, we note that we have too many unknowns if we introduce a 
fictitious initial condition fi(x). Fortunately, we note that the boundary layer in 
this problem can play the role of 'adjusting' the rubbery concentration-exactly 
the role of the fictitious initial condition in Boley's method. Therefore, we set 
f;(x) equal to the actual initial condition for the problem, ~o 

T'"(x, 0).., 0. (4.10) 

Note that in some sense the two approaches are equivalent. If we were not using 
a perturbation method and were tackling the full equations directly, some 
fictitious initial condition C°'(x, 0) could be constructed which would replicate the 
boundary-layer behaviour of our problem. 

Using Green's functions, we determine that the solution of equations (4.3), 
(4.4), and (4.10) is given by 

x l' T'"(O, z) ( x
2 

) T'(x t) = -- -'--~exp - --- dz 
' 2(1t-y)! 0 (t-z)i 4-y(t-z) · 

(4.11) 
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We begin by substituting our expression for T'(O, t) in the case where t < r: 

...,..,( ) ((2t+x
2
)(1-C.) C) ( x) (1-C•)x(t)' ( x

2
) 

1 x, t = -'------'--'-----'-'-+ erfc - - -'----=-- - exp - - . 
2r • 2t! r 1t 4t 

(4.12) 

We may solve similarly for the case where t > r: 

T'(x, t) = erfc (;!) + (1- c.)( 1- x
2 

2
: 

21
)[ erf (;!)-erf ((t ~ r)!)] 

- (l - c.)x [t! exp (- x
2

)- (t - r)! exp (- x
2 

)]. (4.13) 
nt! 4t 4(t-r) 

Again using Green's functions, we determine that the solution of (4.5, 4.6) is 
given by 

T8(x, t) = H(Kt - x) 

(xf' I((K 2z2 -x 2)¼/2K) ) 
X 2 :rl,ce-z12fb(t-z) 

1 
(K 2z 2 -x 2)! dz+fb(t-x/K)e-:r 12", (4.14) 

where 11 is the first modified Bessel function and H is the Heaviside step function. 
From the form of equation ( 4.8) we see that in order to solve our problem we 

will need to calculate a0g. An easy way to solve for a0g is to note that equation 
(4.5) also holds for a0g. Our initial conditions are the same, so aO&(Q, t) may be 
calculated from (3.lb): 

Kie-, L' 
a0g(O, t) = -- fb(z)ez dz. 

')' 0 
(4.15) 

Now we may immediately solve for a0g, which is also valid only for x < Kt: 

a0g(x t) = ~ f.' e -zrza0g(O t - z) 11 ( (K
2
Z

2 
- x

2
)!/ZK) dz + a<>i(O t - x/K)e-x: 12" 

' 2 ' ( 2 2 - 2)1 ' • :,:/,c K Z X I 

(4.16) 

Since our region of interest for solving for our unknown functions is where 
s < Kt, we may omit the Heaviside function and equation (4.7) becomes 

s f' I ( (K2z2 
- s2)!/2K) 

2
- e-z/2/b(t-z) I ( 2 2_ 2)! dz+fit-s/K)e-s/2,c=c •. 

s/,c K Z S 
(4.17) 

However, note from (4.14) that there is a discontinuity around x = Kt which our 
full equation (3.la) cannot propagate. Therefore, we then let s = K and m = ½ in 
(3.8), which then becomes, to leading order, 

-2KC'j; = -agKC'j;, + Ker. 
Letting c<>+ = e-Tf2T+ and integrating once with respect to (, we have 

(4.18) 
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Our initial condition is found from (4.17) to be 

T+(C, 0) = .ft,(O)H(-C). 

Solving ( 4.18) subject to ( 4.19) yields 

,-.,o+ .ft,(O)e-T/2 ( C ) 
l..-. ((, 't') = 2 erfc (2ag 't')½ . 

59 

(4.19) 

(4.20) 

Now we will perform asymptotics in time in order to complete the solution of 
our problem. 

S. Asymptotic results 

5.1 Small-time asymptotics 

We begin by performing small-time asymptotics. We postulate the following 
expansions of our unknown functions: 

s(t) ~ s0 t" (n ;;;i,: 1), (5.1) 

where our restriction on n comes from the fact that we wish to study super-Case 
II behaviour. Substituting (5.1) into (4.17), we have 

/oSot" [ -z/2 l1((K2Z2 - s2)½/2K) d + F (1 -Sot")~ C 
2 e ( 2 2 - 2)1 z JO 2 •• 

s/,c K Z S l K 

We see immediately from the leading-order balance that 

fo= c •. 
Using (5.2) and ( 4.15) in ( 4.16), we have 

Qg( ) K
2
C• ( sot") u s(t), t ~-'Y- t --;- . 

Using (5.3) and the leading orders of (4.12) in (4.8), we have 

(5.2) 

(5.3) 

C - C.sot"-¼ + t(l - c.) - 'Y(K
2
C·)(r- sot")= c.. (5.4) 

• 1d r y K 

Matching the leading order of (5.4) gives 

C.s 0t"-½ t(l - C.) 
- 1t! + , K2C.t +KC.sot"= 0. (5.5) 

Upon examination of (5.5), we see that the dominant balance is n =;, which 
yields 

(5.6) 
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Since n = ¾, we have automatically that s(t) < Kt. Note from equation (5.6) that in 
order to have s0 > 0 as required, the compatibility condition in ( 4.2) must be true. 

Summarizing our results, we have the following, where we recall (3.9) and 
(3.10): 

(
X -s(t)) 

C°'"(x, t) ~ T'(x, t) + [ c. - r(s(t), t)] exp ~ , (5.7a) 

(2t + x
2 

+ C ) erfc (~)- (l - c,)x (!_)\xp (- x
2

) if t < r, 
2, • 2r½ r 1t 4t 

T'(x, t) = erfc (2:½) + (1- c.)( 1- x
2

2: 2t)[ erf c:½)-erf (2(t ~ ,)½)] 
(1 - C )x [ ( x

2
) ( x

2 
)] - • t!exp -- -(t-r)!exp ---- ift>r, 

rn! 4t 4(t - r) 

(5.7b) 

(
X - s(t)) 

u 0-(x, t) = u 0i(s(t), t) exp s . (5. 7c) 

Note that the expressions in (5.7) are good for all time. 
We also have 

t-+ 0 

(5.8) 

X <Kt 

uO&(x, t)-

c.K2 (~ f' e -z/2(1 - e -(1-:)) l1 ((K2Z2 - x2)!/2K) dz + (1 - e -(r-x/,c))e-"/2"), 
')' 2 "'" (K

2
Z

2 
- x2

)! 

(5.9b) 

X> Kt 

(5.10) 
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FIG. 1. Concentration profiles: c. "'0·75, r = 1, 'Y,., 0·5, a&'"' 1, E = 0·0001, 1C = 0·5. In decreasing 
order of darkness: t = 0·001, 0·01, 0·l. 

Figure 1 shows graphs of our concentration field expansions for small times 
(though they are large enough that E = o(t)) and for parameters which satisfy 
(4.1) and (4.2). Note that we see a three-stage profile. The concentration starts at 
0, then rises through the boundary layer around x = Kt. The boundary layer 
doesn't seem that sharp since our x scale is so small. Then there is a relatively flat 
region in the glassy polymer until the second boundary layer brings the 
concentration from the transition value c. to the rubbery region described by 
(5.7b). 

Figure 2 shows graphs of our stress field for the same parameters and times as 
before. The case where t = 0·001 appears only as an extra pixel near (0, 0). Note 
that we have a maximum at x = s(t) as hypothesized earlier. Therefore, the stress 
which builds up in the polymer as the penetrant builds up in the glassy region is 
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FIG. 2. Stress profiles: c. m 0·75, r = 1, 'Y c 0·5, a 1 = 1, E = 0·0001, IC= 0·5. In decreasing order of 
darkness: t = 0·001, 0·01, 0· l. 
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nearly totally released when the polymer enters the rubbery state. Note also that 
there is no discontinuity at x = Kt since uOs(0, 0) = 0. 

5.2 Large-time asymptotics 

Next we perform large-time asymptotics. We begin by notirig that, for long time, 
equation ( 4.5) behaves like 

(5.11) 

and equation (3.2b) behaves like 

(5.12) 

Hence, using equation (5.12) evaluated at the front, equation (4.8) becomes 

(5.13) 

From our condition that C ,s; 1, we see that ( 4.1) must hold. Then, using 
equation (4.13) in (5.13), we see that 

erfc (..!....) + (1 - C >(1 - s
2 

+ 
21

) [erf (..!....) - erf ( s )] 
2t½ • 2r 2t½ (t - r)i 

- (l - ~•)s [r! exp (-
52

)- (t - ,)½ exp (- s
2 

)] = c.(1 + K 2
). 

nt 4t 4(t - r) 

The only way to get an 0(1) balance is if s(t) ~ 2s"'r½. In this case, when we 
asymptotically expand for large time, only the first term contributes to leading 
order, so we have 

(5.14) 

Now we wish to expand our glassy solution. From the form of (5.11), we see 
that the operator in (4.11) is now a long-time asymptotic solution in the glassy 
region, so we have 

0 

x L, fb(z) ( x
2 

) 
T'"(x, t) = 2(n-y)½ o (t - z)~ exp - 4-y(t - z) dz. (5.15) 

We see that the dominant contribution to (5.15) for x oc ti and t large is from the 
neighbourhood of z = t. Therefore, we postulate the following expansion: 

Substituting our expression into (5.8), we immediately see that 

rs~ f,., erfc ( 2:r1). (5.16) 
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Using (5.16) in (4.8), we have 

f, = c. 
"' erfc (s,,,j K) 

Summarizing our results, we have the following: 

t-+ co 

s(t) ~ 2s.,t½, 

X < Kt 

X> Kt 

C.e-t/2 ( Kt - X ) 

C°8(x, t) ~ 2 erfc (s.,/ K) erfc (2a
1
et)! · 
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(5.17) 

(5.18) 

7 (5.19a) 

(5.19b) 

(5.20) 

Figure 3 shows graphs of our long-time concentration field expansions for the 
same parameters as before. The three-stage behaviour is not as pronounced in 
this model since C°8(Kt, t) is exponentially decaying. The clearest picture of the 
sharp front at x = Kt is shown for t = 6. The glassy region has a nearly Fickian 
profile, as does the rubbery region, but they are still separated by the sharp 
boundary layer at x = s(t). 
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FIG. 3. Concentration profiles: c. = 0-75, r = 1, y ""0·5, a 1 = 1, E = 0·0001, ,c = 0·5. In decreasing 
order of darkness: 1 = 6, 24, 96. 
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Figure 4 shows graphs of our long-time stress field expansions for the same 
parameters as before. Note the gap that arises for t = 6. This is due to the fact 
that Fig. 4 is a graph of (5.19b), which is not uniformly valid up to the front 
x = Kt. However, the error behaves like e-t12, and thus becomes negligible for the 
larger values of t. Once again note the slow Fickian rise of the stress, which 
reaches its maximum at x = s(t) before plunging quickly down to 0. 

6. Condusions 

When discussions about non-Fickian polymer-penetrant systems take place, the 
subject of the molecular diffusion coefficient naturally arises. It is known that in 
some systems the diffusion coefficient greatly increases as the polymer changes 
from the glassy to the rubbery state. What is only surmised is the degree to which 
such a change influences the qualitative structure of the solution. The results in 
this paper shed new light upon this subject. 

The moving boundary condition which resulted from our model was highly 
unusual, due to the presence of terms like s in the denominator of one of our 
terms. Therefore, it was not solvable by similarity variables, and Boley's method 
had to be used. The moving boundary condition involved matching two different 
operators at the front, rather than the same operator with different coefficients. 
The solution for the concentration exhibited two fronts: a leading subcharacteris­
tic front x = Kt, as well as our true front x = s(t). 

Since D(C) had vastly different values on either side of the front, this caused a 
large difference in the size of the flux from the glassy and rubbery regions. This 
discrepancy manifested itself by making the stress in the glassy region an order of 
magitude larger than the stress in the rubbery region. The parameter a did not 
play a role here to leading order; hence the flux used up in the phase transition is 
not a dominant effect. The dominant balance is between the concentration and 
stress contributions to the flux. This produced a situation where the stress had its 
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maximum exactly at the secondary front. However, this behaviour is directly 
dependent on our choice of D(C) as having a discontinuity at the phase 
transition. Therefore, this is where our assumption of a phase-transition model 
played a pivotal role. If D(C) were made to depend smoothly on C throughout 
all phases of the polymer, the flux contributions would be of roughly the same 
size at the moving front. Regardless, other models which do not incorporate a 
phase transition, but do have a rapidly increasing diffusion coefficient, still have 
steep fronts (Fu & Durning, 1993). 

We note that, even after making several simplifying assumptions, our resulting 
equations (2.12-2.16) are extremely versatile, for many other types of non­
Fickian behaviour have been modelled using the same equations (Edwards, 1994). 

In this paper, we chose to use analytical and asymptotic methods rather than 
numerical ones. Obviously no choice is without disadvantages. We sacrificed 
computed profiles for all x and t and avoided the challenges which a numerical 
implementation of our problem would entail. In addition, attacking the problem 
analytically necessitated making many simplifying assumptions. However, the 
analytical problem is certainly not without challenges, and by remaining true to 
the analytics, we now have solutions with explicit dependence on various physical 
and state parameters. Having these dependences explicitly derived can provide 
guidance to chemical engineers who may wish to check our results in the 
laboratory or extend our work to more complicated geometries and systems. 
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