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CONVECTION EFFECTS IN THIN REACTION ZONES:
APPLICATIONS TO BIACORE∗

DAVID A. EDWARDS†

Abstract. Surface-volume reactions occur in many physical systems such as biological and
industrial processes. Though traditionally modeled as a surface, the reaction zone is usually a thin
layer (often a gel) abutting a flowing fluid or gas. Therefore, one would expect a more realistic
model for the reacting zone to include the effects of transport in the gel. In this paper we examine
the BIAcore, a device for measuring rate constants which has this geometry. To explain anomalous
measurements from the device, it has been proposed that some flow penetrates into the dextran
(gel) layer, thus enhancing transport. To analyze the reversible kinetics, asymptotic and singular
perturbation techniques are used, yielding linear and nonlinear integrodifferential equations. Explicit
and asymptotic solutions are constructed for cases motivated by experimental design. The results
indicate that such flow penetration effects are bound to be negligible in surface-volume reactions,
regardless of the flow model used.
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1. Introduction. In many physical systems, so-called “surface-volume” reac-
tions occur. In the simplest model, one reactant (herein called the receptor) is confined
to a two-dimensional surface, while the other (the ligand) floats free in (a possibly
stirred) solution, and the reaction occurs only when the ligand interacts with the sur-
face. However, since the receptors are three-dimensional molecules, they either form
or are embedded in a thin reaction zone (such as a gel) near the surface. Given that
many of these systems occur in the presence of an active flow, it is natural to inquire
into the effects of the flow on the reaction zones.

Models of this type are applicable to various industries. The creation of alginate
gel in the food industry is enhanced by the addition of a convective flow of reactant
[27]. In bubble reactors, gas reacts with the liquid which impinges on the bubble
surfaces [19]. Corrosive processes occur in such geometries [13]. Inorganic material
synthesis can be enhanced if the templates are immersed in flow, rather than fixed-
batch, reactors [20]. In high-pressure continuous-flow fixed-bed reactors, gels are
introduced at the reaction surface to minimize hydrodynamics effects [14]. Harmful
blood clots form when platelets adhere to foreign objects in the presence of blood flow
[12]. Various biological processes ensue when ligands floating in the bloodstream bind
to cell receptors which occupy a thin reaction zone about the cell membrane [11].

1.1. The BIAcore. For the purposes of this paper, we focus on the BIAcore,
which is a surface plasmon resonance (SPR) device for measuring rate constants. The
configuration of the BIAcore is described in great detail elsewhere [16], [17], [18],
[26]. For the purposes of this manuscript, we may consider the BIAcore to consist
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Fig. 1.1. Schematic of BIAcore device. The coordinate system has its origin at the intersection
of the ỹ-axis and the dextran-flow interface.

of a rectangular channel through which the ligand is convected in standard two-
dimensional Poiseuille flow from x̃ = 0, the inlet position (see Figure 1.1). Receptors
are embedded in a thin dextran gel attached to the ceiling of the channel. Hence this
device can serve as a representative of many physical systems of the type described
above.

As the ligand diffuses to receptor sites, the binding process is measured by an
evanescent wave that tracks mass changes in the dextran gel, as described more fully
in section 6. This sensogram data is then transferred to a regression program which es-
timates the rate constants. During recent years, mathematical models of the BIAcore
have become increasingly more sophisticated, treating many facets of its transport
processes, including depletion of the free-flowing ligand along the channel [2], [3], [8],
[21], [22]; diffusion in the gel [5], [25], [30], [31]; and signal decay associated with the
measuring wave [6], [18], [25]. However, discrepancies still occur between measure-
ments and simulations using the most sophisticated models [16], [24], [29].

To explain some anomalous observations, Witz [29] proposed that some of the
buffer flow in the channel penetrates into the dextran gel, thus enhancing transport.
In [7], Edwards formulated a mathematical model for this flow and analyzed it in the
case where the reacting zone is treated as a surface. Now we shall treat the reaction
zone as a layer.

As a first approximation, we model the dextran gel as a viscous fluid; others have
treated it as a polymer brush [29]. We show that the physical parameter measuring
penetration is Hr = Hg/Hf , the ratio of the heights of the gel and bulk flow regions. To
leading order the flow adds a local depletion term to the mass action law for the bound
state. When the Damköhler number Da is small, we obtain detailed expressions for
the effect of penetration on the measurements. When Da = O(1) a nonlinear integral
equation results, but the rate constants can easily be estimated using short-time
asymptotics. We consider not only association, but also dissociation experiments.
We also include the effect of evanescent wave decay in the measurement device.
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All of our results indicate that flow penetration effects are very small. Such a
conclusion arises from the geometry of the device, rather than from the model chosen
for the dextran. Since the gel layer is so narrow compared to the rest of the device,
velocities there will be small, no matter the actual transport model used. Clearly this
result can be extended to the other physical systems described above.

2. Preliminaries. We consider the BIAcore to be divided into two regions, as
shown in Figure 1.1: the open channel (the region 0 ≤ ỹ ≤ Hf , where the subscript
“f” stands for “flow”) and the dextran gel layer (the region −Hg ≤ ỹ ≤ 0, where the
subscript “g” stands for “gel”). We are interested in only that portion of the dextran
layer which has length L, and so we take both regions to have 0 ≤ x̃ ≤ L.

2.1. Velocity profiles. The Reynolds number is small [7], so the flow in the
channel is described by a simple one-dimensional laminar model. On the other hand,
the dextran is a gel, and any true description of the flow therein would be quite
complicated. For instance, Witz [29] considers the gel to be a polymer brush. For the
purposes of this paper, we treat it merely as a very viscous fluid. This will necessarily
misstate some quantitative features of the flow, but we shall show that such errors
are negligible when analyzing sensogram data.

For simplicity, we introduce the following scalings for ỹ and the velocity field ṽ:

yf =
ỹ

Hf
, vf(yf) =

ṽf(ỹ)

Vf
, Vf =

ΔpH2
f

2μfL
, yg =

ỹ

Hg
, vg(yg) =

ṽg(ỹ)

Vg
,(2.1a)

Vg =
Hr

μr
Vf , Hr =

Hg

Hf
, μr =

μg

μf
,(2.1b)

where μ is the bulk viscosity, V is the characteristic velocity in each region, and Δp
is the (constant) pressure differential, which can be related to the known flow rate.
Here (and throughout), if the same symbol appears both with and without tildes, the
symbol with a tilde has dimensions, while the symbol without a tilde is dimensionless.

In (2.1b) the subscript “r” refers to “ratio,” and we will use it in the same way
(gel to flow) throughout. Using these scalings, it can be shown [7] that with suitable
boundary and interface conditions, the velocity profiles are given by

vf(yf) = 1 − y2
f +

(yf − 1)(μr − H2
r )

Hr + μr
,(2.2a)

vg(yg) = Hr(1 − y2
g) +

(yg + 1)(μr − H2
r )

Hr + μr
.(2.2b)

Since solid dextran corresponds to μr = ∞, we might consider μr as a large
parameter to use in a perturbation approach. However, we can solve our problem for
any μr if we choose Hr � 1, as motivated by its value in Table 4.1 below. Since Hr is
simply a geometric parameter, such a choice will extend our results to other physical
systems with thin reaction zones.

In the limit of small Hr, (2.2b) becomes a nearly linear profile, corresponding to
flow driven largely by shear from the bulk interface. Though using a more complicated
polymer brush model for the gel leads to exponential and Bessel-function velocity
profiles, these also reduce to linear profiles for small Hr [29]. Thus the two approaches
are equivalent with a proper choice of μr.
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2.2. Transport in the flow. In the flow, the ligand (concentration C̃f) travels
both by convection and diffusion. However, the Peclét number in the flow, defined as

Pef =
H2

f /D̃f

L/Vf
=

characteristic diffusion time in flow

characteristic convection time in flow
,(2.3)

is large (for a typical value, see Table 4.1 below). Here D̃f is the molecular diffusion
coefficient of the ligand in the flow. Hence one needs consider only the thin Lévêque
boundary layer near ỹ = 0 [3], which motivates the following scalings:

x =
x̃

L
, y = Pe

1/3
f yf , t = k̃onCut̃, C̃f(x̃, ỹ, t̃) = Cu[1 − DaCf(x, y, t)],(2.4)

where k̃on is the association rate constant and Cu is the ligand concentration entering
the device, which is used to create the dimensionless ligand concentration Cf . Note
that with our choice of scalings, the reaction time scale is the one of interest.

Here Da is the Damköhler number

Da =
k̃onR̃T

D̃f/(HfPe
−1/3
f )

=
reaction “velocity”

diffusion “velocity” in boundary layer
,(2.5)

where R̃T is the area density of receptor sites in the device. Da, which measures the
effect of transport on the chemical reaction, characterizes the size of ligand depletion
induced by the reaction, as shown in (2.4). Since Pef ∝ Vf , Da = 0 corresponds to the
case of infinitely fast flow where no depletion occurs. Most experiments are designed
so that Da is small; hence the choice of scaling in (2.4) makes Cf a perturbation.

With these scalings, it can be shown [7] that the governing equations for Cf are

∂2Cf

∂y2
= (v0 + v1y)

∂Cf

∂x
, Cf(0, y, t) = 0, Cf(x,∞, t) = 0,(2.6a)

v0 ≡ vf(0)Pe
1/3
f =

HrPe
1/3
f (Hr + 1)

Hr + μr
, v1 ≡ v′

f(0) =
μr − H2

r

Hr + μr
.(2.6b)

The scaling of v0 in (2.6b) is chosen so that our results transition smoothly to the
solid dextran case in the limit of large μr.

For the size of the transport processes to be comparable, the length scale in the
Lévêque boundary layer in the fluid (where convection and diffusion balance) should
be on the order of that in the gel. This implies that

Hg = O(HfPe
−1/3
f ) =⇒ Hr = O(Pe

−1/3
f ).(2.7)

Such a scaling makes v0 into an O(1) quantity as long as we treat μr as O(1). Equation
(2.7) also motivates the choice of Hr as a small parameter, since Pef � 1. Unfortu-

nately, (2.7) is rather a weak bound. From Table 4.1 below we have that Hr � Pe
−1/3
f ,

and so velocities in the gel will be comparatively small. Again, this result will hold
for other systems with similar geometries.

To solve for Cf , we use Laplace transforms (denoted with a hat) in the x-direction.
To understand the gel dynamics, we need the value of Ĉf only at the flow-gel interface
y = 0. In particular, it can be shown [7] that Ĉf satisfies

Ĉf(0, t) =
Ai(s1/3v0/v

2/3
1 )

(sv1)1/3 Ai′(s1/3v0/v
2/3
1 )

∂Ĉf

∂y
(0, t).(2.8)
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3. Dynamics in the dextran layer.

3.1. Transport. In the dextran gel, the reaction occurs only inside the pores,
so it is the concentration of ligand per fluid volume that is important. To convert to
this quantity, we simply divide C̃g, the concentration of ligand in the gel matrix, by
the volume fraction φ of pores in the gel. (φ is also called the partition coefficient.)
Motivated by this reasoning and (2.4), we choose the following scaling for C̃g:

C̃g(x̃, ỹ, t̃) = φCu[1 − DaCg(x, yg, t)].(3.1a)

Because the dextran layer is often treated as a surface, R̃T is usually quoted as an
area concentration. To convert this to a volume concentration, we simply divide by
the width of the layer Hg, and hence we have an appropriate scaling for B̃:

Bg(x, yg, t) =
Hg

R̃T

B̃g(x̃, ỹ, t̃).(3.1b)

Though the receptor density may initially be nonuniform [15], [23], for now we take
it to be uniform, since the error introduced from such an assumption is small [9].

In the dextran gel, the ligand travels both by convection and diffusion. Its evo-
lution is also affected by binding. Since the concentration of available receptors is
so much greater than the ligand concentration [5], the ∂Cg/∂t term in the transport
equation may be neglected. Moreover, Hg � L, and so diffusion in the x-direction
can be neglected.

Lastly, the Peclet number in the gel is given by

Peg =
H2

g/D̃g

L/Vg
=

H3
r

μr

D̃f

D̃g

Pef =
1

μr

D̃f

D̃g

O(v3
0),(3.2)

where we have used (2.1) and (2.7). Here D̃g is the diffusion constant in the dextran
gel. The analysis in [7], which considers the case of a surface reaction, contains terms
only up to O(v0). The same sort of analysis will hold here (as shown below), and thus
we may ignore convection in the ligand transport equation. Physically, the small size
of Peg in (3.2) shows that diffusion is the dominant transport process in the layer,
not convection. Thus the dominant effect of flow penetration is a slip condition on
the bulk flow.

Hence the leading-order dimensionless ligand transport equation is given by

∂2Cg

∂y2
g

= −D
∂B

∂t
,(3.3a)

D =
D̃f/(HfPe

−1/3
f )

φD̃g/Hg

=
diffusion velocity in diffusive boundary layer

diffusion velocity in dextran
.(3.3b)

We solve (3.3a) by writing our solution as the sum of a particular solution Ap and a
homogeneous solution Ah, as follows:

Cg(x, yg, t) = −DAp(x, yg, t) + Ah(x, yg, t),(3.4)

where Ap satisfies

∂2Ap

∂y2
g

=
∂B

∂t
,

∂Ap

∂yg
(x,−1, t) = 0, Ap(x, 0, t) = 0.(3.5)
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The homogeneous problem is most easily solved in Laplace transform space. Solv-
ing the homogeneous form of the operator in (3.3a) subject to a no-flux condition at
the channel wall y = −1, we determine that Âh is a function of t only. At the flow-
gel interface, the flux and ligand concentration per fluid volume must be continuous.
Combining these conditions with (2.8) and using the transform of (3.4), we obtain

Âh(t) = − Ai(s1/3v0/v
2/3
1 )

(sv1)1/3 Ai′(s1/3v0/v
2/3
1 )

∂Âp

∂yg
(0, t).(3.6)

Since we cannot invert (3.6) in closed form, we use the fact that we consider the
dextran to be a very viscous fluid, so v0 → 0. Formally, there are two ways to justify
this from (2.6b). The first, physically intuitive, reasoning is to say that μr → ∞. The
second, more consistent from a mathematical point of view, is to take Hr → 0. Then
expanding (3.6) to leading two orders in v0 and inverting, we obtain the following:

Ah(x, t) =
1

(3v1)1/3Γ(2/3)

∫ x

0

∂Ap

∂yg
(x− ξ, 0, t)

dξ

ξ2/3
− v0

v1

∂Ap

∂yg
(x, 0, t) + O(v2

0).(3.7)

Note from (3.5) that

∂Ap

∂yg
(x, 0, t) =

∫ 0

−1

∂B

∂t
dyg;

in other words, the derivative is simply the average rate of binding in the layer at fixed
x. Thus the integral term in (3.7) has an elegant physical interpretation, namely that
the deficit in the ligand concentration at position x is the accumulation of the reaction
that has occurred upstream. The effect of the slip velocity is to introduce the local
reaction into the computation of the ligand deficit through the second term in (3.7).

When expanding (3.6) to obtain the expansion in (3.7), we tacitly assumed that
s1/3v0 � 1. However, Laplace transform theory states that small x corresponds to
large s, so this assumption does not hold in the limit of small x. Fortunately, the
BIAcore returns measurements not of B, but of its average over the entire layer and
some scanning range xmin ≤ x ≤ xmax:

B̄(t) =
1

xmax − xmin

∫ xmax

xmin

∫ 0

−1

B(x, yg, t) dyg dx,(3.8)

where xmin is bounded away from zero. Since x = 0 is out of the scanning range, we
may confidently use our results to analyze sensogram data.

3.2. Reaction. The bound state evolves according to a standard bimolecular
mass action law. Using the scalings in (2.4) and (3.1) leads to the dimensionless form

∂B

∂t
= (1 − B)(1 − DaCg) − KB, K =

k̃off

k̃onCu

,(3.9a)

B(x, yg, 0) = Bi,(3.9b)

where k̃off is the dissociation rate constant and K is the dimensionless affinity con-
stant. Though the theory can handle general initial conditions for B, in practice the
initial condition is always spatially uniform. For an association experiment, initially
there is no bound state. For a dissociation experiment, we start with the steady state
of (3.9a), which will be shown to be a constant.
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Since Ap depends on ∂B/∂t, substitution of (3.4) and (3.7) into (3.9a) would
yield a nonlinear integrodifferential equation, and an exact solution would have to
be obtained numerically. However, asymptotic results can be derived in physically
relevant regimes.

4. Small Da results. Equation (3.9a) shows that Da = 0 corresponds to the
well-mixed case where there is no depletion. When designing experiments, scientists
strive to keep Da as small as possible to minimize transport effects [28]. Therefore,
we now specialize to the case of small Da by introducing the following expansion:

B(x, yg, t) = B0(x, yg, t) + DaB1(x, yg, t) + o(Da).(4.1)

4.1. Association experiment. We begin by considering an association experi-
ment as described in section 3. If we substitute (4.1) into (3.9), we find to leading order
that the ligand concentration does not contribute. Hence we are in the well-mixed
case, the solution of which is given by

B0(x, yg, t) =
1 − e−αt

α
+ Bie

−αt = B̄0(t),(4.2)

which leads to the following expression for Ap:

Ap =
dB0

dt

yg(yg + 2)

2
.(4.3)

Since Ap is independent of x, it is simple to use (4.3) in (3.7) and compute that

Ah(x, t) =
dB0

dt
h(x), h(x) =

32/3x1/3

v
1/3
1 Γ(2/3)

− v0

v1
.(4.4)

The value of Ah(x, t) in (4.4) is exactly the value of Cf(x, 0, t) obtained if the reacting
zone is treated as (instead of a layer) a two-dimensional surface at x = 0. In that
case, D = 0, and hence there is no contribution from Ap in (3.4).

Substituting (4.3) and (4.4) into (3.4), we obtain

Cg(x, yg, t) =
dB0

dt
hg(x, yg), hg(x, yg) =

[
−D

yg(yg + 2)

2
+ h(x)

]
.(4.5)

Thus, as in [5], the effects of the variables x and y decouple. We also note that (4.3) is
exactly the same as in [5], which considered the no-penetration case. Hence the effect
of flow penetration appears only in the homogeneous part. Since the velocity in the
layer is negligible at this order, the flow simply provides a slip condition for the bulk,
which then couples to the receptor layer through the flow-gel interface conditions.

Substituting (4.2) and (4.5) into the next order of our expansion of (3.9) and
solving, we have the following:

B1 =

[
(e−αt − 1)χ

α
− Kt

]
χe−αt

α
hg(x, yg).(4.6)

Then averaging, we obtain

B̄1 =
χe−αt

α

[
(e−αt − 1)χ

α
− Kt

]
h̄g, h̄g =

D

3
+ h̄.(4.7)
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Table 4.1

Parameter values for Figures 4.1 and 4.2.

Parameter Value Parameter Value

Bi 0 Pef 3.72 × 102

CT (mol/cm3) 10−11 t 10−3 t̃/s
D 1.20 × 10−1 xmax 7.92 × 10−1

Da 10−1 xmin 2.08 × 10−1

Hr 2 × 10−3 α 2
K 1 χ 1

k̃on(cm3mol−1s−1) 108

0

0.0005

0.001

0.0015

0.002

500 1000 1500 2000 2500

difference

t̃

Fig. 4.1. Absolute difference between (4.7) with μr = ∞ (solid dextran) and μr finite for
(in decreasing order of thickness) μr = 1, 10, 100. Relative difference is about 1%. Association
experiment.

Aficionados of perturbation theory will note the term in (4.7) proportional to te−αt,
similar to a secularity in a two-timing exercise. As t → ∞, B0 = O(1) and DaB1 �
B0, so from an experimental standpoint, this is not a problem. However, it can be
shown [3], [8] that a multiple-scale expansion is formally required. Though we could
construct such an expansion for this case, it will not be illuminating.

We use the parameters listed in Table 4.1 to plot our solutions. The parameter
values are from [7], with the exception of the value for D, which is from [6].

Figure 4.1 shows the effect of μr on B̄1 plotted against the dimensional time t̃ (in
seconds) for various values of μr. We use the dimensional time in order to compare
better with sensogram data. Note that in every case the difference is quite small due
to the low value of Hr. In particular, even the error for μr = 1 (corresponding to
the absence of a dextran layer) is only O(Hr). In addition, the difference is positive;
that is, allowing the flow to penetrate into the dextran layer enhances the association
process. Since Hr is a geometrical parameter, this order estimate holds for other
physical systems of this type.
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0
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t̃

Fig. 4.2. Absolute difference between effective rate constant solution B̄ of (4.8) with μr = ∞
(solid dextran) and μr finite for (in decreasing order of thickness) μr = 1, 10, 100. Relative difference
is about 0.04%. Association experiment.

In Figure 4.1 (and throughout this manuscript) we graph the absolute difference
because it is that difference which will be measured by the device and plotted on the
sensogram. Obviously small differences will be masked by the underlying noise in any
experiment. However, for comparison purposes and to extend our results to other
physical systems, we also compute the relative difference. The case with μr = ∞,
graphed in Figure 1 of [5], shows that B1 is on the order of 0.2, so the differences
shown in Figure 4.1 are on the order of 1%. (Note this is the difference in B̄1, not in
the whole solution, which would include the much greater contribution from B̄0.)

These results may be stated more simply in the context of an effective rate con-
stant (ERC) equation, as outlined in [5], [8], and [21]. Substituting (4.5) into (3.9a),
we have

∂B

∂t
= (1 − B)

[
1 − Da

dB0

dt
hg(x)

]
− KB + O(Da2),

which we may rearrange and average to obtain

dB̄

dt
=

1 − αB̄

1 + Da(1 − B̄)h̄g
+ O(Da2).(4.8)

Equation (4.8) is an ODE for B̄, the actual sensogram data produced by the BIAcore,
and hence the solution requires no postprocessing averaging step. Equation (4.8) is in
the form obtained previously [5], albeit with a different value of h̄. This is consistent
with [4], where it is shown that if B0 is spatially uniform, the ERC approximation is
robust to any geometry or flow.

Figure 4.2 shows the effect of μr on our ERC solution. The absolute error here
is an order of magnitude smaller than that in Figure 4.1. This is because Figure 4.1
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shows errors in B̄1, which have to be multiplied by Da (0.1 in our graphs) to obtain
the error in the full solution as shown in Figure 4.2. The relative error here is around
0.1%, as can be seen by comparison with the full solution in Figure 1 of [8]. As before,
flow penetration enhances the association process.

4.2. Dissociation experiment. A typical BIAcore experimental run begins
with an association experiment run to completion. At this stage, pure buffer solution
(inlet concentration zero) is injected into the device, initiating the dissociation process.
This second experiment then provides additional data for rate constant estimation.

The initial condition for this phase of the experiment is the steady state of (3.9a).
Since there is no flux of ligand through the exterior wall, one finds from (3.3a) that
the steady state of Cg must be a constant. By using continuity arguments at the
interface, one finds that this constant must be zero. Thus the steady state of (3.9a)
is

Bs = α−1,(4.9)

where the subscript “s” refers to “steady state.” Since (4.9) provides the initial con-
dition for the dissociation problem, we are justified in always taking a constant initial
condition for B.

With no ligand injected into the device, the equation analogous to (3.9a) becomes

∂B

∂t
= (1 − B)(−DaCg) − KB.(4.10)

Thus in this case Cg ≤ 0. The analysis proceeds in a manner analogous to the
association experiment; the relevant results are given by

B0(x, t) = B̄0(t) =
e−Kt

α
,(4.11a)

B̄1 =
K

α

(
t +

e−Kt − 1

Kα

)
h̄ge

−Kt,(4.11b)

where h̄g is given in (4.7). The same secularity problem appears with more obvious
effects, since in the dissociation experiment the second term in the expansion can
become larger than the first. Again, we restrict ourselves to the case where Dat =
O(1), since constructing the multiple-scale expansion is not illuminating.

With the inlet value 1 absent from the concentration term in (4.10), the expression
analogous to (4.8) is given by

dB̄

dt
=

−KB̄

1 + Da(1 − B̄)h̄g
+ O(Da2),(4.12)

as in [5].

5. Moderate Da results. Since Cg depends on B, (3.9a) is nonlinear if Da =
O(1). Thus to obtain analytic solutions we resort to short-time asymptotics by as-
suming a solution of the form

B(x, yg, t) = Bi + β(x, yg)t + o(t), Ap(x, yg, t) = Ap,1(x, yg) + o(1),(5.1a)

Ah(x, t) = Ah,1(x) + o(1).(5.1b)
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5.1. Association experiment. Substituting (5.1) into (3.4), (3.9a), and (3.5),
we have, to leading order in t,

Cg = −DAp,1 + Ah,1,

β = (1 − Bi)[1 − Da(−DAp,1 + Ah,1)] − KBi,(5.2a)

∂2Ap,1

∂y2
g

= β,
∂Ap,1

∂yg
(x,−1) = 0, Ap,1(x, 0) = 0.(5.2b)

Since (5.2a) is linear, it is most convenient to work in Laplace transform space. The
relationship between Âh,1 and dÂp,1/dyg(0) is exactly the same as in the transform
of (3.7). Upon substituting that expression into the transform of (5.2) and solving,
we obtain a form for Âp,1 that depends explicitly on dÂp,1/dyg(0). Some algebraic
manipulation eliminates the unknown from our solution, yielding

Âp,1 = − χ

λ2
aras

[
1 − cosh λa(ya + 1)

cosh λa

](
1 +

ν
1/3
a

s1/3

)−1

,(5.3)

ra = 1 − (1 − Bi)Da
v0

v1

tanhλa

λa
, λ2

a = DDa(1 − Bi),(5.4a)

νa =
1

3v1

{
Γ(2/3)

Γ(1/3)

[
1

Da(1 − Bi)

λa

tanhλa
− v0

v1

]}−3

,(5.4b)

where the subscript “a” denotes “association.” We have written (5.4b) in a form where
the correction due to v0 can be easily seen. Recall that in deriving this form, we have
already taken an asymptotic limit for small v0. Thus, we should expect that (5.3) will
hold only for those Da where the first bracketed term is much larger than the second.

To simplify the interpretation of the data, we write the average (3.8) in dimen-
sional form with the aid of (2.4):

B̄(t̃) ∼ Bi + St̃, t̃ → 0,

S =
k̃onCu{I[β;xmax] − I[β;xmin]}

xmax − xmin
,(5.5a)

I[β;x] ≡
∫ x

0

∫ 0

−1

β(ξ, yg) dyg dξ.(5.5b)

Substituting (5.3) into the Laplace transform of (5.2b) and inverting, we have

I[β;x] =
χe−νax

νara

[
eνax − 1 −

∣∣∣∣P
(

4

3
,−νax

)∣∣∣∣+
∣∣∣∣P
(

5

3
,−νax

)∣∣∣∣
]

tanhλa

λa
,(5.6a)

where P is the normalized lower incomplete gamma function whose definition is [1]

P
(m

3
,−νax

)
=

γ(m/3,−νax)

Γ(m/3)
.(5.6b)

In the limit that D → 0, λa → 0 and (5.6a) reduces to the result in the surface
reaction case [7].

To estimate the rate constants from an experiment, we first run the association
experiment to steady state. This will yield an estimate for α, and hence K, from
(4.9). To calculate k̃on, we use the linear fit S from our short-time data in (5.5a) to
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Table 5.1

Parameter values for Figures 5.1 and 5.2.

Parameter Value Parameter Value

D̃f (cm2/s) 2.8 × 10−7 L (cm) 2.4 × 10−1

D̃g (cm2/s) 3.36 × 10−8 RT (mol/cm2) 10−12

k̃off (s−1) 8.9 × 10−3 φ 1

obtain k̃on. Since Da also depends on k̃on, the relationship between S and k̃on is not
a simple linear one. Using our estimates for K and k̃on together, we may calculate
k̃off .

We may asymptotically determine the behavior of S for small k̃on, which corre-
sponds to small k. For small k, ra → 1, λa → 0, and νa → 0, so we have

S ∼ k̃onCuχ, k̃on → 0.(5.7)

Equation (5.7) merely shows that if there is no forward reaction (k̃on = 0), then there
will be no change in the bound concentration from the initial state (S = 0).

At the other extreme, we cannot ascertain the behavior in the case that k → ∞
due to the form of (5.4b). As k increases, so will Da, thus eventually causing the
assumed ordering in (5.4b) to be violated. Essentially, because of the faster reaction,
we cannot simply take the first-order convection correction; we must include additional
terms in our analysis.

Since tanhλa < 1, we can still satisfy our ordering if we replace tanhλa with 1
for simplicity. By doing so, we may construct a specific bound using the parameters
in Table 5.1 (which come from [6] and [7]). The bound is calculated to be

k � 232μ2
r ,(5.8)

which is quadratic in μr—a much less restrictive bound than the linear bound in the
surface reaction case [7].

5.2. Dissociation experiment. For the dissociation case, the initial condition
is the steady state from the association problem, given in (4.9). In addition, the
leading-order concentration is now 0, not 1. Essentially, only the parameters in the
problem have changed, not the general structure. Therefore, the solution process
follows as before, and our expression for I is

I[β;x] = −Ke−νdx

ανdrd

[
eνdx − 1 −

∣∣∣∣P
(

4

3
,−νdx

)∣∣∣∣+
∣∣∣∣P
(

5

3
,−νdx

)∣∣∣∣
]

tanhλd

λd
,

(5.9)

λ2
d = DDa

(
K

α

)
, rd = 1 −

(
K

α

)
Da

v0

v1

tanhλd

λd
,(5.10a)

νd =
1

3v1

{
Γ(2/3)

Γ(1/3)

[
1

Da(K/α)

λd

tanhλd
− v0

v1

]}−3

,(5.10b)

where the subscript “d” refers to “dissociation.” Similar to the previous subsection,
in the limit that D → 0, our results reduce to the surface reaction case in [7].

Using our new initial condition, we write our average as

B̄(t) ∼ 1

α
+ St̃, t̃ → 0,
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Fig. 5.1. Thick line: S versus log10 k, keeping k̃off fixed. Thin line: large-k asymptote. Disso-
ciation experiment, v0 = 0.

where S is defined in (5.5a). Note from (5.9) that the slope is now negative, as
expected for our dissociation problem.

We carefully analyze the behavior of S with respect to k, beginning with the case
where v0 = 0. In [5], the author kept K fixed and varied k̃on, which necessitated
(tacitly) varying k̃off . In contrast, here we wish to keep k̃off fixed, which means that
K will vary as k̃on does. This approach was taken in the study of flow penetration
on the surface reaction case [7]. The value chosen for k̃off is listed in Table 5.1 and
comes from [7].

In order to visualize the relationship between S and k̃on, in Figure 5.1 we construct
a curve using the parameters in Table 5.1 with μr = ∞ (the solid dextran case). For
convenience, we define the new variable

k = 10−9k̃on
mol · s
cm3

.(5.11)

Since we take Bi = 0 for the association case, χ = 1 and the solution is independent
of K. It can be shown that the only qualitative difference between the graph here
and with K fixed is in the asymptotes. (See [7] for a related discussion of the layer
reaction case.)

For the small-k̃on asymptote, we first note from (5.10) that as k̃on → 0, λd → 0,
which causes the λd contribution to disappear, as in the previous subsection. In
addition, rd → 1 and νd → 0. Thus we have that

S ∼ −k̃onCu, k̃on → 0.(5.12)

Note that (5.12) holds regardless of the value of v0.
For the large-k̃on asymptote, we must restrict ourselves to the case with no flow:
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Fig. 5.2. Absolute difference between S with μr = ∞ (solid dextran) and μr finite versus log10 k
for (in decreasing order of thickness) μr = 1, 10, 100. Relative difference is about 1%. Dissociation
experiment.

v0 = 0 and v1 = 1, so rd = 1. First, it is convenient to estimate λd in this limit:

lim
k̃on→∞

λd ≡ λ∞ =

(
R̃THg

φD̃g

k̃off

Cu

)1/2

.(5.13a)

In addition, we may use (5.10b) to calculate ν∞ for this case:

ν∞ =
1

3Pef

[
Γ(1/3)

Γ(2/3)

R̃THf

D̃f

k̃off

Cu

tanhλ∞
λ∞

]3

, v0 = 0.(5.13b)

Equations (5.13) illustrate a key difference between our analysis and that of [5].
In that work, K was kept fixed, so λd was unbounded as k̃on → ∞. This simplified
I[β;x] greatly, leading to a relatively simple result. In our case, the asymptote has no
convenient closed-form solution, but upon substituting (5.13) into (5.6a) and (5.5a),
we obtain S = −2.20 × 10−3, which is exactly the asymptote in Figure 5.1.

Now that we have a baseline result for comparison, we next vary the viscosity
ratio μr. Again we must preserve the assumed size ordering in (5.10b). Substituting
our parameters into the above, we have

4.74 × 10−1 � 16.2μr,(5.14)

which is simply a bound on μr that is always satisfied experimentally. Thus our
expressions do not break down for large k as in the association case.

In Figure 5.2 we examine the effect of varying viscosity on the short-time asymp-
tote S. As expected, the corrections are again small. The decrement to S increases
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with decreasing μr, as lower μr means more convective transport, which enhances
dissociation. By examining Figure 5.1, we see that the relative difference is about
1%.

6. Evanescent wave effects. The way in which an SPR device like the BIAcore
measures binding is quite involved; here we present a brief summary. As binding
occurs in the gel, the gel’s index of refraction changes. A polarized light beam is
aimed at the sensor surface at various angles. A sharp decrease in reflectivity is noted
for a certain incidence angle, which can be related to the index of refraction and
hence the binding. Since the strength of the evanescent wave (electric field) decays
as it penetrates into the gel, the effect of binding on signal decays further from the
surface ỹ = −Hg [10], [18].

By using a simple exponential decay model for the signal, we obtain the following
result for the average B̄, which replaces (3.8):

B̄(t; δ) =
δ

(1 − e−δ)(xmax − xmin)

∫ xmax

xmin

∫ 0

−1

e−δ(yg+1)B(x, yg, t) dyg dx, δ =
Hg

Hw
,

(6.1)

where Hw is the characteristic decay length of the wave. Here we include δ explicitly
in the notation for B̄ to indicate that we are including wave effects.

The only change to our work from previous sections is the calculation of averages.
Since the leading-order solutions are independent of yg, their averages do not change
with the decaying signal strength.

6.1. Results for small Da. We begin by examining the small Da case. Using
our averaging scheme in (6.1) to average hg as given in (4.5) yields

h̄g(t; δ) = D
δ2 + 2[(δ + 1)e−δ − 1]

2δ2(1 − e−δ)
+ h̄.(6.2)

It can be shown [6] that the term multiplying D is bounded between 1/3 (as in (4.7))
and 1/2; hence we expect the effect of the evanescent wave layer to be minimal. In
order to plot some curves to verify this, we choose a typical decay length Hw from
[25] and a typical gel width from [31]:

Hw = 9.5 × 10−6 cm, Hg = 10−5 cm =⇒ δ = 1.05.(6.3)

As a näıve first approach, we might try to create a graph similar to Figure 4.1
to illustrate the changes of varying viscosity. However, we note from (4.4) and (6.2)
that the only term involving μr is h̄ (through the v0 term). Hence the D term will
always vanish when calculating

B̄1(μr = ∞) − B̄1(μr �= ∞),

as in Figure 4.1. Since the D term includes the effect of decay, a graph of the above
quantity will be the same whether or not decay is included.

The ERC solution does not have the unusual property described above, so to
include the wave decay we substitute (6.2) into (4.8). In Figure 6.1 we plot the
difference between the no-flow and viscous-flow cases of the ERC solution, including
the wave decay. The graph is virtually indistinguishable from its analogue Figure 4.2,
so the effect of decay is slight and the relative error is again around 0.04%.
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Fig. 6.1. Difference between wave decay effective rate constant solution B̄ of (4.8) (using (6.1)
and (6.2)) with μr = ∞ (solid dextran) and μr finite for (in decreasing order of thickness) μr = 1,
10, 100. Relative difference is about 0.04%. Association experiment.

For the dissociation experiment, the analysis is exactly analogous. The only
difference is that rather than substituting (6.2) into (4.8), we substitute it into (4.12).

6.2. Results for moderate Da. The wave decay effect is more pronounced in
the moderate Da case, in some cases leading to nonunique parameter estimates for
the same data [6]. Proceeding in a manner analogous to (5.6a), we find that including
the decay yields

I[β;x] =
χe−νax

2raνa cosh λa

[
eνax − 1 −

∣∣∣∣P
(

4

3
,−νax

)∣∣∣∣+
∣∣∣∣P
(

5

3
,−νax

)∣∣∣∣
]

×
[
e(λa−δ) − 1

λa − δ
− e−(λa+δ) − 1

λa + δ

]
δ

1 − e−δ
.(6.4)

Note that the x-dependence is unchanged since the decay operates only in the y-
direction.

Upon taking the limit for small k̃on, the fact that λa → 0 forces all the δ terms
in the last line of (6.4) to cancel. Thus (5.7) still holds. This is because in this limit,
the reaction is so slow that all transport effects are unimportant. Thus the binding
will be uniform, and the wave decay cannot be discerned.

We demonstrate our results for varying μr in Figure 6.2. Since this is an asso-
ciation graph, the relevant restriction on k is given by (5.8), so the graphs end for
different values of k. As before, the addition to S increases with decreasing μr, as
lower μr means more convective transport, which enhances association. The actual
value of S is essentially the negative of that shown in Figure 6.3, as can be seen from
Figure 3 in [5]; hence the relative difference is about 1%.
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Fig. 6.2. Absolute difference between S with μr = ∞ (solid dextran) and μr finite versus log10 k
for (in decreasing order of thickness) μr = 1, 10, 100. Relative difference is about 1%. Association
experiment, decay included.
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Fig. 6.3. Thick line: S versus log10 k, keeping k̃off fixed. Thin line: large-k asymptote. Disso-
ciation experiment, v0 = 0, wave decay considered.
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Fig. 6.4. Absolute difference between S with μr = ∞ (solid dextran) and μr finite versus log10 k
for (in decreasing order of thickness) μr = 1, 10, 100. Relative difference is about 1%. Dissociation
experiment, decay included.

For the dissociation case, the arguments are similar. The equation analogous to
(5.9) is

I[β;x] = − Ke−νdx

2αrdνd cosh λd

[
eνdx − 1 −

∣∣∣∣P
(

4

3
,−νdx

)∣∣∣∣+
∣∣∣∣P
(

5

3
,−νdx

)∣∣∣∣
]

×
[
e(λd−δ) − 1

λd − δ
− e−(λd+δ) − 1

λd + δ

]
δ

1 − e−δ
.(6.5)

As for the case without wave decay, earlier studies of the moderate Da case have
kept K fixed and varied k̃on [6]. Thus, as in the previous subsection, in Figure 6.3 we
present a demonstration graph to show what happens when we keep k̃off fixed instead.
Again, the main difference lies in the asymptotes.

As above, when taking the limit for small k̃on, the δ terms cancel. Thus the ex-
pression (5.12) for the small-k̃on asymptote still holds. For the large-k̃on asymptote in
the no-flow case, we must use the expressions in (5.13). Substituting these parameters
and our value of δ into (6.5) and (5.5a), we obtain S = −2.18×10−3, which is exactly
the asymptote in Figure 6.3.

Lastly, we vary the viscosity ratio μr in Figure 6.4. Note that the corrections are
again small and negative, as convection enhances dissociation. As in Figure 5.4, there
are no restrictions on k because (5.14) is always satisfied. Therefore, our graphs go all
the way to the right. Comparison with Figure 6.3 shows that the relative difference
is again around 1%.

7. Conclusions. To explain BIAcore data that did not fit the traditional models,
Witz [29] proposed that buffer flow from the channel penetrates into the dextran gel
layer, enhancing transport. We have formulated a new model to include this effect.
The key dimensionless parameter in this study is the small parameter Hr, which
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measures the ratio of the widths of the gel and flow and hence characterizes the size
of the velocity v0 within the dextran gel. Its effect can be most readily seen in (3.7),
where the slip condition at the flow-gel interface introduces a local depletion term
that augments the integral depletion term from the no-flow case.

Since (3.9a) is a nonlinear equation, we obtained analytical results by introducing
experimentally relevant simplifications. Most experiments are designed to have Da �
1 to minimize transport effects, so we calculated the O(Da) correction to the standard
well-mixed case. The only effect of penetration is to introduce an additional term in
h(x), as defined in (4.4). We derived not only solution profiles for B, but also an ERC
equation which can be used to fit sensogram data directly.

Some experiments cannot be designed such that Da � 1, so we analyzed the
moderate Da case by considering the short-time slope of the sensogram data. Cor-
rections due to flow penetration appeared only in the parameter definitions in (5.4)
and (5.10); the rest of the theory is the same as in the no-flow case [5]. The nature
of our small-v0 expansion dictated that we could not construct results for the case
where Da → ∞; however, such conditions do not occur experimentally.

As in the small Da case, we examined both the association and dissociation phases
of an experiment, providing (when possible) both the large- and small-k̃on behavior
of the short-time slope. In order to obtain results more consistent with experimental
practice, we kept k̃off fixed, in contrast to [5]. However, any differences between the
papers were minor. In addition, since the inherent decay in the evanescent measuring
wave affects only the averaging, not the transport, it was a simple matter to recast
our previous results in this context.

In this manuscript we studied convection by modeling the dextran gel as a viscous
fluid, though others have used more realistic polymer brush models [29]. Despite the
simplicity of our model, the small thickness of the gel layer indicates that more realistic
models will not produce qualitative changes in our results. We thus conclude that
flow penetration effects are not likely to explain anomalous BIAcore measurements,
and other effects, such as steric hindrance effects or conformational changes, should
be investigated instead.

Moreover, since the size of the penetration effects are dictated by geometry, rather
than properties of the gel, flow, or reactants, these insights can be extended to many
similar physical systems. In particular, one may use gels and other compounds in
reacting zones to reduce the size of hydrodynamic convective effects (as in [14]).
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