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Abstract The BIAcore is a surface plasmon resonance (SPR) device used to mea-
sure rate constants, primarily for biochemical reactions. It consists of a flow chan-
nel containing one reactant adjoining a dextran gel containing the other. In order
to explain anomalous measurements from the device, it has been proposed that
some flow penetrates into the dextran layer, thus enhancing transport. A model is
presented that accounts for such behavior, and typical velocity fields in the dex-
tran are constructed. The system is analyzed in the limit of the surface reaction
model, which corresponds to the limit of thin dextran layers. Asymptotic and sin-
gular perturbation techniques are used to analyze association and dissociation ki-
netics. Linear and nonlinear integral equations result from the analysis; explicit
and asymptotic solutions are constructed for physically realizable cases. The re-
sults indicate that the effects of such penetration are bound to be small, regardless
of the flow model used.

Keywords Asymptotic expansions · BIAcore · Biochemical reactions ·
Integrodifferential equations · Surface reaction

Nomenclature

Variables and parameters

Units are listed in terms of length (L), moles (N), or time (T). If the same letter ap-
pears both with and without tildes, the letter with a tilde has dimensions, while the
letter without a tilde is dimensionless. The equation where a quantity first appears
is listed, if appropriate.
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a: steric hindrance factor (23).
B̃(·, t̃): bound state concentration on surface at position · and time t̃ ; unit

N/L2 (23).
C: the Bromwich contour.
C̃(x̃, ỹ, t̃): unbound ligand concentration at position (x̃, ỹ) and time t̃ ; unit

N/L3 (10).
D̃: molecular diffusion coefficient; unit L2/T (10).
Da: Damköhler number, which measures the ratio of reaction and

diffusion effects (15).
f (·): arbitrary function.
H: height of a portion of the channel; unit L (1a).
h(x): function used in effective rate constant solution (38).
I[β; x]: integration operator, defined in (51) as I[β; x] ≡ ∫ x

0 β(ξ) dξ.

K: dimensionless affinity constant for system (28a).
k̃off: dissociation rate; unit T−1 (23).
k̃on: binding rate; unit L3/(NT) (14a).
L: length of the channel; unit L (1a).
m: arbitrary constant.
P(m/3,−νx): normalized lower incomplete gamma function (53b).
Pef: Peclét number for the system, which measures the ratio of con-

vective to diffusive effects, defined as Vf H2
f /D̃f L (12).

Q: flow rate through channel; unit L3/T.
R̃T: receptor sites; unit N/L2 (15).
r : dimensionless parameter (49a).
S: slope of a line; unit T−1 (52).
s: Laplace transform variable.
t̃ : dimensional time; unit T (10).
V: characteristic velocity scale; unit L/T (3a).
ṽ(ỹ): flow velocity; unit L/T (1a).
w: width of channel; unit L.
x̃: dimensional measure of length along the channel; unit L (10).
ỹ: dimensional measure of height from dextran–flow interface;

unit L (1a).
Z : the integers.
α: dimensionless constant, defined as 1 + K (34a).
β(x): term in expansion of B(x, t) for small t (47).
�p: pressure differential; unit M/LT2 (1a).
µ: bulk viscosity; unit M/LT (1a).
ν: dimensionless parameter (49b).
ξ : dummy variable.
χ : dimensionless constant, value 1 − αBi (37).

Other notations

a: as a subscript, used to indicate an association experiment (49a).
d: as a subscript, used to indicate a dissociation experiment (58a).
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f: as a subscript, used to indicate the flow region (1a).
g: as a subscript, used to indicate the dextran gel layer (1b).
i: as a subscript, used to indicate the initial state of a quantity (25).
max: as a subscript, used to indicate the right endpoint of the scanning

range (31).
min: as a subscript, used to indicate the left endpoint of the scanning

range (31).
m ∈ Z : as a subscript, used to indicate an expansion in yf (13a) or Da (33).
r: as a subscript, used to indicate a ratio of gel to flow (4).
s: as a subscript, used to indicate a steady state (41).
u: as a subscript on C, used to indicate a characteristic value (11).
∞: as a subscript on ν, used to indicate the value as k̃on → ∞ (63).
¯ : used to denote the mean of the bound concentration (31).
ˆ : used to indicate the Laplace transform of a quantity.

1. Introduction

To understand biological processes, scientists must have accurate measurements
of the speed at which the underlying biochemical reactions occur. The relevant
parameters in question are the rate constants, which relate directly to the rate of
a reaction between well-mixed quantities, eliminating depletion and transport ef-
fects. Measurements of reaction rates can be most readily obtained from real-time
measurements of the species evolution for a particular reaction. One popular de-
vice for obtaining such data is the BIAcore, which is a surface plasmon resonance
(SPR) device.

The BIAcore has proven to be an extremely versatile instrument, aiding re-
searchers in a variety of areas. Researchers are using the BIAcore to help design
self-assembling DNA chips (Boireau et al., 2005). Varadarajan et al. (2005) used
the BIAcore to characterize antibody–antigen reactions in the immune response,
advancing their work towards an HIV vaccine. Because of the real-time nature of
the device, Minunnia et al. (2005) are using the BIAcore to automate and greatly
speed the process of identifying useful pharmaceutical compounds from plant sam-
ples. The speed with which the BIAcore can obtain measurements is exploited by
Samsonova et al. (2004) to create a preliminary screen for shellfish exposure to
environmental toxins.

The configuration of the BIAcore is described in great detail elsewhere
(Karlsson et al., 1991; Liedberg et al., 1993; Szabo et al., 1995; Karlsson and Fält,
1997). For our purposes, the BIAcore device consists of a rectangular channel
through which one of the reactants (the ligand) is convected in a standard two-
dimensional Poiseuille flow from x̃ = 0, the inlet position (see Fig. 1). The other
reactant (the receptor) is bound to a sensor chip which is attached to the ceiling of
the channel. Depending on its reactive characteristics, the receptor is either bound
directly to the sensor’s gold surface (in the case of a C1 chip) or embedded in a
thin dextran gel that is linked to the gold surface (Hoffman et al., 2000). The latter
case is the most prevalent, so we focus on it in this paper.
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Fig. 1 Schematic of BIAcore device. Unbound ligand molecules are carried in parabolic flow
from the left. The large circle illustrates a magnification of the area indicated by the smaller circle.
In this region near the dextran layer, unbound ligand molecules migrate to empty receptor sites
and bind.

Binding is measured by an evanescent wave that tracks mass changes in the sen-
sor chip. This sensogram data is then transferred to a regression program that pre-
dicts the rate constants using an appropriate mathematical model. Mathematical
models of the BIAcore have treated many facets of its dynamics and transport
processes. The effects of convective transport and depletion along the channel are
well-known (Davis et al., 1995; Myszka et al., 1998; Edwards, 1999; Edwards et al.,
1999; Mason et al., 1999). The effects of diffusive processes in the dextran layer
have been studied by Edwards (2001), Schuck (1996), Wofsy and Goldstein (2002),
and Yarmush et al. (1996). Even the effects of the decay of the measuring wave in
the BIAcore have been examined (Liedberg et al., 1993; Schuck, 1996; Edwards,
2004). However, discrepancies between measurements and simulations still occur
(Karlsson and Fält, 1997; Witz, 1999; Qian, 2004).

In almost all of the BIAcore studies to date, the dextran gel is treated as a solid,
and hence diffusion is the only transport process of interest. To explain some of
the anomalous observations, Witz (1999) proposed that some of the buffer flow in
the channel penetrated into the dextran gel. In this paper, we build on Witz’s work
by quantitatively describing the effect of flow penetration on the chemical reaction
in the BIAcore.

To do so, we model the dextran gel as a viscous fluid. We derive the flow profiles
in dextran and the channel, and then indicate how these profiles affect transport
in the bulk flow. The relevant physical parameter for penetration is shown to be
Hr, the ratio of the heights of the gel and bulk flow regions. When considering the
binding, we focus on a surface reaction model, leaving the gel reaction model for
later work (Edwards, submitted).

We show that the flow adds a local depletion term to the mass action law for
the bound state. In the limit of small Damköhler number Da, we obtain explicit
solutions for the bound state as well as expressions that can be easily fitted to sen-
sogram data. When Da = O(1), a nonlinear integral equation results, but the rate
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constants can easily be estimated from a short-time solution for the bound-state
concentration. We consider not only association, but also dissociation experiments.

As in Witz (1999), we show that flow penetration speeds transport. However, our
results indicate that any enhancements to transport from flow penetration are very
small. This conclusion arises from the small width of the gel layer, therefore using
more sophisticated models for the dextran layer, such as a polymer brush model,
will not change this fact. Thus, flow penetration may be safely ignored when using
a surface reaction model to analyze BIAcore sensogram data.

2. Velocity profiles

We consider the BIAcore to consist of two regions, as shown in Fig. 1: the open
channel (the region 0 ≤ x̃ ≤ L, 0 ≤ ỹ ≤ Hf, where the subscript “f” stands for
“flow”), and the dextran gel layer (the region 0 ≤ x̃ ≤ L, −Hg ≤ ỹ ≤ 0, where the
subscript “g” stands for “gel”). In this section, we derive profiles for the flow ve-
locity in each region.

The model for flow in the channel is the simple one-dimensional laminar flow,
since the Reynolds number is small (see Appendix). The velocity ṽ is in the x̃-
direction; thus we have

µf
d2ṽf

dỹ2
= −�p

L
, 0 ≤ ỹ ≤ Hf; ṽf(Hf) = 0, (1a)

where µ is the bulk viscosity and �p is the (constant) pressure differential, which
can be related to the known flow rate Q. The boundary condition is simple no-slip
at the wall.

Next, we consider the thornier question of the flow field inside the dextran. Dex-
tran is a gel, and hence any true description of the flow inside it would have to
include porous media or other similar effects. For instance, Witz (1999) consid-
ers the gel to be a polymer brush. Initially we treat it merely as a very viscous
fluid. Though this will necessarily misstate some quantitative features of the flow,
we shall demonstrate that from the standpoint of analyzing sensogram data, such
errors are negligible.

Note that we use the standard Eulerian coordinate frame when formulating our
equations. If the dextran gel were a true fluid, this would cause the receptor sites to
move with time, which would require a Lagrangian description of their dynamics.
However, since the viscous fluid is only an (somewhat crude) approximation to the
actual dextran gel, we may keep the receptor sites fixed in the Eulerian frame. One
can envision this as the fluid flowing through a forest of receptors.

Thus, we model the flow in dextran as in (1a):

µg
d2ṽg

dỹ2
= −�p

L
, −Hg ≤ ỹ ≤ 0; ṽg(−Hg) = 0. (1b)

Note that the pressure differential in the two regions must be identical to maintain
unidirectional flow. Finally, at the interface ỹ = 0, we have continuity of velocity
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and stress:

ṽf(0) = ṽg(0), µf
dṽf

dỹ
(0) = µg

dṽg

dỹ
(0). (2)

To streamline the analysis, we introduce dimensionless variables. In the flow
region, we use scalings chosen to simplify the algebra:

yf = ỹ
Hf

, vf(yf) = ṽf(ỹ)
Vf

, Vf = �pH2
f

2µf L
. (3a)

There are several choices for the characteristic scale Vg for ṽg. We could keep
the velocity interface condition balanced by choosing Vg = Vf. However, we know
from the Appendix that Hg � Hf, so we expect the velocity in the dextran gel to
be much lower than that in the bulk flow. This regime matches previous models
that treat dextran as a solid with no velocity (Schuck, 1996; Yarmush et al., 1996;
Edwards, 2001; Wofsy and Goldstein, 2002; Edwards, 2004). Alternatively, we
could choose Vg to simplify (1b).

However, due to the small size of the channel and the larger bulk flow above,
the main driving force for the velocity in dextran will not be the pressure differen-
tial modeled in (1b). Rather the shear stresses imposed by the bulk flow at ỹ = 0,
as modeled in (2), will dominate. Therefore, we introduce the following scalings,
which keep the stress interface condition in (2) balanced:

yg = ỹ
Hg

, vg(yg) = ṽg(ỹ)
Vg

, Vg = Hr

µr
Vf, (3b)

Hr = Hg

Hf
, µr = µg

µf
. (4)

Here the subscript “r” refers to “ratio,” and we will use it in the same way (gel to
flow) throughout.

Since solid dextran corresponds to µr = ∞, we might consider µr as a large pa-
rameter to use in a perturbation approach. This is not the best choice, for we can
solve our problem for any µr if we use a different perturbation parameter, as de-
scribed later.

Substituting (3) and (4) into (1), we obtain

d2vf

dy2
f

= −2, 0 ≤ yf ≤ 1; vf(1) = 0, (5a)

d2vg

dy2
g

= −2Hr, −1 ≤ yg ≤ 0; vg(−1) = 0, (5b)

vf(0) = Hr

µr
vg(0),

dvf

dyf
(0) = dvg

dyg
(0). (6)
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As desired, the stress interface equation remains balanced in the dimensionless
context. Solving (5) and (6), we have the following results:

vf(yf) = 1 − y2
f + (yf − 1)

(
µr − H2

r

)
Hr + µr

, (7a)

vg(yg) = Hr
(
1 − y2

g

) + (yg + 1)
(
µr − H2

r

)
Hr + µr

. (7b)

In order to calculate Vf for any experiment, we relate the velocity profiles to the
known flow rate Q. If the channel has width w, then we have

Q
w

=
∫ 0

−Hg

ṽg(ỹ) dỹ +
∫ Hf

0
ṽf(ỹ) dỹ.

Substituting our velocity results from (7) into the above, we obtain the following
result for the dimensionless flux Q/wVf Hf:

Q
wVf Hf

= 2
3

− 1 − H2
r /µr

2(1 + Hr/µr)
+ H2

r

µr

[
2Hr

3
+ 1 − H2

r /µr

2(1 + Hr/µr)

]
. (8)

From the Appendix, we have that Hr = 2 × 10−3 as an upper bound, so the dex-
tran layer is only 1/500 as thick as the bulk. Thus, we choose Hr as the small pertur-
bation parameter characterizing this aspect of the problem. (Other dimensionless
parameters will characterize other dynamic processes, as shown later.) Expanding
(8) for small Hr, we have

Q
wVf Hf

= 1
6

+ O
(

Hr

µr

)
. (9)

The 1/6 value in (9) is exactly the value of the dimensionless flux when the reacting
layer is treated as a surface. Note that the behavior of the flow for large µr follows
naturally from this expansion, as µr is always coupled with Hr in (8). Since we
expect the effective viscosity of the dextran to be high, µr is quite large, and the
error we make in using (9) is therefore quite small.

In the limit of small Hr, (7b) becomes a nearly linear profile, corresponding to
shear-driven flow. A more complicated polymer brush model for the dextran layer
leads to exponential and Bessel function profiles for the velocity field (Witz, 1999).
Nevertheless, that author reduces these complicated functions to linear profiles in
the region of interest. Thus, the two approaches are equivalent with proper choices
of µr.

3. Transport in the flow

In the flow, the ligand (concentration C̃) travels both by convection and diffusion:

∂C̃f

∂ t̃
= D̃f

(
∂2C̃f

∂ x̃2
+ ∂2C̃f

∂ ỹ2

)
− ṽf(ỹ)

∂C̃f

∂ x̃
, (10)
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where D̃f is the molecular diffusion coefficient of the ligand in the flow. At the
upstream end (x̃ = 0), we have a prescribed concentration Cu:

C̃f(0, ỹ, t̃) = Cu. (11)

For the BIAcore system, the Peclét number (Pef) in the flow, given by

Pef = H2
f /D̃f

L/Vf
= Characteristic diffusion time in flow

Characteristic convection time in flow
, (12)

is large (for a typical value, see Table 2 later). Hence, one need consider only the
thin Lévêque boundary layer near ỹ = 0 (Edwards, 1999). Thus, we expand (7a)
for small yf to obtain

vf(yf) = vf(0) + v1 yf, vf(0) = Hr(Hr + 1)
Hr + µr

, (13a)

v1 ≡ v′
f(0) = µr − H2

r

Hr + µr
. (13b)

In the case that µr = ∞, vf(yf) ∼ yf, which is the standard normalized velocity pro-
file for a no-slip condition (Edwards, 1999).

Our results should reduce to solid dextran when µr → ∞, so we use the scalings
from Edwards (2001), which treats that case:

x = x̃
L

, y = Pe1/3
f yf = Pe1/3

f ỹ
Hf

, t = k̃onCu t̃, (14a)

where k̃on is the association rate constant for the binding reaction. (Hence the time
scale of interest is the one on which the reaction occurs.)

Motivated by Edwards (2004), we scale the ligand concentration in the following
way:

C̃f(x̃, ỹ, t̃) = Cu[1 − Da Cf(x, y, t)]. (14b)

Here Cu is the inlet value of the ligand concentration. Thus the relevant quantity
for the ligand concentration is the new dependent variable Cf (Edwards, 1999).
Once multiplied by the Damköhler number (Da), Cf represents the percentage
change in ligand concentration from the upstream value. It will be shown later
that the driving force for this change is the depletion of ligand due to binding at
the surface.

The Damköhler number is defined as

Da = k̃on R̃T

D̃f/(Hf Pe−1/3
f )

= Reaction “velocity”
Diffusion “velocity” in boundary layer

, (15)

where R̃T is the density of receptor sites in the device. It is an area density, which
means for a problem with a dextran gel layer, it is simply the volume density



Bulletin of Mathematical Biology (2006) 68: 627–654 635

averaged over the ỹ-direction. Though the receptor density may initially be
nonuniform (O’Shannessy et al., 1992; Joss et al., 1998) for now we take it to be
uniform, since the error introduced from such an assumption is small (Edwards
and Swaminathan, 2005).

As discussed earlier, Da measures the effect of transport on the chemical
reaction. In particular, from (14b) we see that it characterizes the size of ligand
depletion induced by the reaction. Since Pef ∝ Vf, Da = 0 corresponds to the case
of infinitely fast flow where no depletion occurs. The reasoning behind the choice
for the Da scaling in (14b) will become clear shortly. Because the ligand concen-
tration can never exceed the input value, Cf ≥ 0.

Substituting (14) and (13a) into (10), we obtain

kon Pe1/3
f

∂Cf

∂t
= ∂2Cf

∂y2
−

[
Pe1/3

f vf(0) + v1 y + O
(
Pe−1/3

f

)] ∂Cf

∂x
, (16a)

kon = k̃onCu L
Vf

, (16b)

where we have used the fact that Pef 
 1 in eliminating the x-diffusion term. As
noted in Edwards (1999), kon Pe1/3

f � 1, and hence we are in the steady state of the
flow transport equation.

From (16a) we see that if vf(0) is larger than O(Pe−1/3
f ), that term dominates and

we must rescale y. For instance, if vf(0) = O(1), we must choose a scaling of Pe1/2
f

to balance the x- and y-diffusion terms. However, such a choice is unsatisfactory
for several reasons:

1. We want to replicate our previous results in the case where µr → ∞; therefore,
we want our scalings to remain the same, not jump from Pe1/2

f to Pe1/3
f .

2. As discussed earlier, vf(0) �= O(1); it is small. Nevertheless, we do not take
vf(0) = O(Pe−1/3

f ) and ignore it, since we want the effect of v0 to appear at lead-
ing order.

Therefore, we choose the dominant balance of

vf(0) = v0 Pe−1/3
f , v0 = Hr Pe1/3

f (Hr + 1)
Hr + µr

. (17)

We may motivate this choice physically by noting that in order for the relative size
of the transport effects to be comparable, the length scale in the boundary and
dextran layers should be comparable. For instance, the diffusion time should be
comparable, given that D̃g and D̃f have been determined to be of the same order
(Phillies, 1985; Karlsson et al., 1994; Sikavitsas et al., 2002). Such a restriction yields

Hg = O
(
Hf Pe−1/3

f

) =⇒ Hr = O
(
Pe−1/3

f

)
. (18)

Substituting (18) into (13a) yields the scaling in (17) as long as we treat µr as O(1).
This motivates the choice of Hr as a small parameter, since Pef 
 1.



636 Bulletin of Mathematical Biology (2006) 68: 627–654

Unfortunately,(18) is rather a weak bound. From the Appendix we have that
Hr = 2 × 10−3 as an upper bound, while Pe−1/3

f = 1.39 × 10−1. Thus, the dextran
layer is quite a bit thinner than the unstirred layer, and so velocities there will be
comparatively small.

With these assumptions, the leading order of (16a) becomes

∂2Cf

∂y2
= (v0 + v1 y)

∂Cf

∂x
. (19)

If we recall that the case of solid dextran corresponds to v0 = 0, we reduce to the
previous case (Edwards, 2001). Lastly, we posit boundary conditions for (19). Sub-
stituting (14) into (11) yields the proper inlet condition:

Cf(0, y, t) = 0. (20a)

The solution as we exit the boundary layer must match the concentration in the
bulk, which does not deviate from the inlet concentration value. In dimensionless
form, this condition becomes

Cf(x,∞, t) = 0. (20b)

To solve for Cf, we introduce the concept of the Laplace transform in the
x-direction:

f̂ (s) =
∫ ∞

0
f (x)e−sx dx, f (x) = 1

2π i

∫
C

f̂ (s)esx ds,

where C is the Bromwich contour. Taking the Laplace transform of (19) subject to
(20a), we obtain

∂2Ĉf

∂y2
= s(v0 + v1 y)Ĉf,

the solution of which, subject to the Laplace transform of (20b), is

Ĉf(s, y, t) = f (t) Ai

(
s1/3(v0 + v1 y)

v
2/3
1

)
, (21)

where f (t) is an undetermined function. In general, f (t) would be determined
once we couple the flow to the reaction process.

Such coupling will take place at the flow–dextran interface y = 0, and therefore,
we are interested in the value of Ĉf only at that point. In particular, we may elimi-
nate the unknown function f (t) from our analysis by noting that

Ĉf(s, 0, t) = Ai
(
s1/3v0/v

2/3
1

)
(sv1)1/3 Ai′

(
s1/3v0/v

2/3
1

) ∂Ĉf

∂y
(s, 0, t). (22)
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4. Surface reaction model

Now we examine the reaction process. As a first attempt, we model the reaction
by treating the receptor layer as a surface. It may seem inconsistent to consider the
layer to find the velocity in Section 2 and then ignore it here. However, we note
the following:

1. We could have just as easily derived (19) by modeling the flow in the dextran
layer as a slip condition on the main flow, and calculating the slip size using
dominant-balance arguments.

2. We know from Edwards (2001) that when including the receptor layer, trans-
port effects in the x- and y-directions decouple, with the former arising directly
from a surface reaction model. Thus, the results derived here will be useful when
including the receptor layer in the reaction process (Edwards, submitted).

Treating the layer as a surface requires the introduction of the area concentra-
tion B̃ of bound receptors, which evolves according to a standard bimolecular mass
action law:

∂ B̃
∂ t̃

= k̃on[(R̃T − aB̃)C̃f(x̃, 0, t̃)] − k̃off B̃, (23)

where k̃on and k̃off are the association and dissociation rate constants, respectively.
The (R̃T − aB̃) term models the number of receptors available for binding. Note
that for each bound molecule, a receptors are unavailable for binding. a is a steric
hindrance factor, which measures the ability of a ligand molecule to occlude neigh-
boring receptors (Zheng and Rundell, 2003). By taking a = 1, we ignore this effect,
since the only receptor unavailable for binding is the one actually bound.

To couple the flow and the reaction, we note that all diffusive flux into the re-
acting surface must be used up in binding:

D̃f
∂C̃f

∂ ỹ
(x̃, 0, t̃) = ∂ B̃

∂ t̃
. (24)

Lastly, we impose an initial condition on B̃. Though the theory can handle gen-
eral initial conditions, in practice the initial condition is always spatially uniform.
For an association experiment, initially there is no bound state. For a dissociation
experiment, we start with the steady state of (23), which will be shown to be a
constant. Thus, we have

B̃(x̃, 0) = B̃i, (25)

where B̃i is a constant.
To scale B̃, we choose the receptor density:

B(x, t) = B̃(x̃, t̃)
R̃T

, Bi = B̃i

R̃T
. (26)



638 Bulletin of Mathematical Biology (2006) 68: 627–654

Substituting (14) and (26) into (23)–(25) (with a = 1), we obtain

∂Cf

∂y
(x, 0, t) = −∂ B

∂t
, (27)

∂ B
∂t

= (1 − B) [1 − Da Cf(x, 0, t)] − KB, K = k̃off

k̃onCu
, (28a)

B(x, 0) = Bi. (28b)

Here K is the dimensionless affinity constant.
Taking the Laplace transform of (27) and using (22), we have

∂Ĉf

∂y
(s, 0, t) = −dB̂

dt
=⇒ Ĉf(s, 0, t) = − Ai

(
s1/3v0/v

2/3
1

)
(sv1)1/3 Ai′

(
s1/3v0/v

2/3
1

) dB̂
dt

. (29)

(Note that we may use the total derivative for dB̂/dt , since it depends only para-
metrically on s.) Since we cannot invert (29) in closed form, we use the fact that
we consider dextran to be a very thick fluid, so v0 → 0. Formally, there are two
ways to justify this from (17). The first, physically intuitive reasoning is to say that
µr → ∞. The second, more consistent from a mathematical point of view, is to
take Hr → 0.

Then expanding (29) to leading two orders, we obtain the following:

Ĉf(s, 0, t) ∼ − 1
(sv1)1/3

dB̂
dt

{
Ai(0)
Ai′(0)

+ s1/3v0

v
2/3
1

×
[

Ai′(0)
Ai′(0)

− Ai(0) Ai′′(0)
Ai′(0)2

]
+ O(v2

0)
}
, (30a)

Cf(x, 0, t) = 1
(3v1)1/3	(2/3)

∫ x

0

∂ B
∂t

(x − ξ, t)
dξ

ξ 2/3
− v0

v1

∂ B
∂t

+ O(v2
0). (30b)

The integral term in (30b) has an elegant physical interpretation. It merely states
that the deficit in the ligand concentration at position x is the accumulation of the
reaction that has occurred upstream. The effect of the slip velocity is to introduce
the local reaction into the computation of the concentration deficit through the
second term in (30b). With v0 = 0 (which corresponds to v1 = 1), (30b) reduces to
the previous result in the surface reaction case in Edwards and Jackson (2002).

In our expansion in (30a), we tacitly assumed that s1/3v0 � 1. But Laplace trans-
form theory states that small x corresponds to large s, therefore (30b) does not
hold in the limit of small x. Fortunately, the BIAcore returns measurements not of
B, but of the average of B over some scanning range xmin ≤ x ≤ xmax:

B̄(t) = 1
xmax − xmin

∫ xmax

xmin

B(x, t) dx, (31)
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where xmin is bounded away from zero. Since x = 0 is out of the range of interest
for the averaging in our device, we may confidently use (30b) to analyze sensogram
data.

Substituting (30b) into (28a) and rearranging, we have

∂ B
∂t

+ KB = (1 − B)
{

1 − Da
[

1
(3v1)1/3	(2/3)

∫ x

0

∂ B
∂t

(x − ξ, t)

× dξ

ξ 2/3
− v0

v1

∂ B
∂t

]}
. (32)

Equation (32) is a nonlinear integrodifferential equation, and an exact solution
would have to be obtained numerically. However, asymptotic results can be de-
rived in physically relevant regimes.

5. Small Da results

When designing experiments, scientists strive to keep Da as small as possible
(Ward and Winzor, 2000). From (28a) one can see that the case of Da = 0 cor-
responds to the well-mixed case where there is no depletion. In order to keep
Da � 1, the following bound on the velocity (and hence the flow rate) must be
observed (Edwards, 2001):

Vf 
 k̃3
on R̃3

T Hf L

D̃2
f

.

Clearly the faster the reaction, the higher the flow rate must be to minimize down-
stream depletion effects. Though the bound for Vf involves the unknown rate con-
stant k̃on, one can obtain an order-of-magnitude estimate through even unadjusted
calculations.

Therefore, we now specialize to the case of small Da by introducing the follow-
ing expansion:

B(x, t) = B0(x, t) + Da B1(x, t) + O(Da). (33)

5.1. Association experiment

We begin by considering an association experiment as described in Section 3.
Substituting (33) into (28a), we have, to leading two orders:

∂ B0

∂t
= 1 − αB0, α = K + 1, (34a)

B0(x, 0) = Bi, (34b)

∂ B1

∂t
+ αB1 = −(1 − B0)Cf(x, 0, t), B1(x, 0) = 0. (35)
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Solving (34a) subject to (34b), we obtain

B0(x, t) = 1 − e−αt

α
+ Bie−αt = B̄0(t). (36)

In order to calculate Cf, we first calculate the integrand in (30b):

dB0

dt
= e−αtχ, χ = 1 − αBi. (37)

The fact that B0 is independent of x is critical; hence we emphasize this fact by
using the total derivative in (37). Since (37) is independent of x, we may pull it out
of the integral in (30b) to obtain

Cf(x, 0, t) = dB0

dt
h(x), h(x) = 32/3x1/3

v
1/3
1 	(2/3)

− v0

v1
. (38)

Substituting (36)–(38) into (35) and solving, we have the following:

B1(x, t) =
[

(e−αt − 1)χ
α

− Kt
]

χe−αt h(x)
α

.

Then averaging, we have

B̄1(t) =
[

(e−αt − 1)χ
α

− Kt
]

χe−αt h̄
α

, (39a)

h̄ = 35/3
(
x4/3

max − x4/3
min

)
4v

1/3
1 	(2/3)(xmax − xmin)

− v0

v1
, (39b)

where we have used (38).
Careful students of perturbation theory will note the term in (39a) proportional

to te−αt , similar to a secularity in a two-timing exercise. This is not a problem from
a practical perspective, since as t → ∞, B0 = O(1) and Da B1 � B0. However, it
can be shown (Edwards, 1999; Edwards et al., 1999) that a multiple-scale expansion
is formally required. Though we could construct such an expansion for this case, it
will not be illuminating.

To plot our solutions, we use the parameters listed in Tables 1 and 2, which are
from Edwards (1999). The choice of Hr is discussed in the Appendix of this work.

Since the new facet of this work is the introduction of a viscous-fluid model for
dextran, the salient feature is the effect of µr on the perturbation solution given

Table 1 Parameter values for Figs. 2 and 3.

Parameter Value

Bi 0
χ 1
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Table 2 Parameter values for Figs. 2–5.

Parameter Value

CT (mol cm−3) 10−11

Da 10−1

Hr 2 × 10−3

K 1
k̃on(cm3mol−1s−1) 108

Pef 3.72 × 102

t 10−3 t̃/s
xmax 7.92 × 10−1

xmin 2.08 × 10−1

α 2

by (36) and (39a). Figure 2 illustrates this effect by showing the difference between
the perturbation solution for the solid dextran (µr = ∞) case and the case of finite
µr. The graph uses the dimensional time t̃ (in seconds) for better comparison with
the sensogram data. Note that in every case the difference is quite small due to the
low value of Hr. In particular, even the error for µr = 1 (corresponding to the ab-
sence of a dextran layer) is only O(Hr). In addition, the difference is positive; that
is, allowing the flow to penetrate into the dextran layer enhances the association
process, as suggested by Witz (1999).

These results may be stated more simply in the context of an effective rate con-
stant equation (ERC), as outlined in Edwards (2001), Edwards et al. (1999), and
Mason et al. (1999). Substituting (38) into (28a), we obtain

∂ B
∂t

= (1 − B)
[

1 − Da
dB0

dt
h(x)

]
− KB + O(Da2),

Fig. 2 Difference between perturbation solution with µr = ∞ (solid dextran) and µr finite for
(in decreasing order of thickness) µr = 1, 10, 100. Association experiment.
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Fig. 3 Difference between ERC solution of (40) with µr = ∞ (solid dextran) and µr finite for (in
decreasing order of thickness) µr = 1, 10, 100. Association experiment.

which we may rearrange and average to obtain

dB̄
dt

= 1 − α B̄
1 + Da(1 − B̄)h̄

+ O(Da2). (40)

Equation (40) is an ODE for B̄, the actual sensogram data returned by the BIA-
core. As such, it requires no post-processing averaging step. Equation (40) is in the
form obtained previously (Edwards et al., 1999), albeit with a different value of h̄.
This is consistent with Edwards (2000), where it is shown that the ERC approxi-
mation is robust to various geometries and flows as long as B0 is spatially uniform.

Since the form of (40) is more convenient for data analysis, we also present
results showing the effect of the viscous-dextran assumption on the ERC solution.
Again, we focus on the difference between the ERC solution with µr infinite (the
solid dextran case) and the case with µr finite. The results are presented in Fig. 3.
As before, flow penetration enhances the association process, but only slightly.

5.2. Dissociation experiment

We conclude this section with a brief discussion of dissociation experiments. In a
typical BIAcore experimental run, an association experiment is run to completion.
Then the ligand is removed from the buffer solution, and pure solution (inlet con-
centration C̃f = 0) is injected into the device. This then provides additional data
for rate constant estimation.

From (29) we see that as t → ∞, Cf(x, 0, t) → 0, so the steady state of (28a) is

Bs = α−1, (41)

where the subscript “s” refers to the steady state. Equation (41) provides the initial
condition for the dissociation problem, and hence we are justified in (25) in always
taking the initial condition for B to be spatially uniform.
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The equation analogous to (28a) is

∂ B
∂t

= (1 − B)[−Da Cf(x, 0, t)] − KB. (42)

Since no ligand is being injected into the device, the 1 inside the bracketed term
in (28a) no longer appears. For consistency of our algebraic expressions, we wish
to retain the sign of the remaining term. Physically, this term represents the con-
centration of ligand molecules introduced into the flow by dissociation from the
bound state. Since this term must be positive, Cf ≤ 0 in the dissociation case, while
it was non-negative in the association case.

Substituting (33) into (42) and (41), we have, to leading two orders,

∂ B0

∂t
= −KB0, B0(x, 0) = α−1, (43a)

∂ B1

∂t
+ KB1 = −(1 − B0)Cf(x, 0, t), B1(x, 0) = 0. (43b)

Solving (43a), we obtain

B0(x, t) = B̄0(t) = e−Kt

α
, (44a)

dB0

dt
= − Ke−Kt

α
. (44b)

The form of Eq. (38) does not change; the only difference is that (44b) replaces
(37). Since dB0/dt < 0, Cf < 0, as required. Substituting (38) and (44a) into (43b)
and solving, we have the following:

B1(x, t) = K
α

(
t + e−Kt − 1

Kα

)
h(x)e−Kt ,

which we may average to obtain

B̄1(t) = K
α

(
t + e−Kt − 1

Kα

)
h̄e−Kt , (45)

where h̄ is given in (39b). The same secularity problem arises, but here it is more
obvious since DaB̄1 
 B̄0 as t → ∞. Again, we restrict ourselves to the case where
Da t = O(1), since constructing the multiple-scale expansion is not illuminating.

Figure 4 is analogous to Fig. 2, as it shows the effect of varying µr on the
perturbation solution for the dissociation experiment. Again, the difference be-
tween the solution with µr infinite and µr finite is graphed. In contrast to the
association case, the difference is negative. By causing the function B̄1 to decay
faster, penetration of the flow into the dextran layer enhances the dissociation
process.
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Fig. 4 Difference between perturbation solution with µr = ∞ (solid dextran) and µr finite for
(in decreasing order of thickness) µr = 1, 10, 100. Dissociation experiment.

Since the value 1 is absent from the concentration term in (42), the expression
analogous to (40) is given by

dB̄
dt

= −KB̄
1 + Da(1 − B̄)h̄

+ O(Da2), (46)

as in Edwards et al. (1999).
Figure 5 is analogous to Fig. 3, as it shows the effect of varying µr on the ERC

solution for the dissociation case. Again, the difference between the solution with
µr infinite and µr finite is graphed. The magnitude of the deviations is similar to
the association experiment, and the sign is negative, as in Fig. 4.

Fig. 5 Difference between ERC solution of (46) with µr = ∞ (solid dextran) and µr finite for
(in decreasing order of thickness) µr = 1, 10, 100. Dissociation experiment.
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6. Surface model, moderate Da

6.1. Association experiment

If Da = O(1), (32) is nonlinear. Thus, to obtain analytic solutions we resort to
small-time asymptotics by assuming a solution of the form

B(x, t) = Bi + β(x)t + o(t), t → 0. (47)

Substituting (47) into (32), we have, to leading order in t ,

(1 − Bi)
(

1 + Da
v0

v1
β

)
− β − KBi = Da(1 − Bi)

(3v1)1/3	(2/3)

∫ x

0
β(x − ξ)

dξ

ξ 2/3
,

which is a linear integral equation for the unknown β(x). Taking the Laplace trans-
form of the above and solving for the unknown β̂, we obtain

β̂(s) = χ

ra

(
1 + ν

1/3
a

s1/3

)−1

, (48)

ra = 1 − (1 − Bi)Da
v0

v1
, (49a)

νa = 1
3v1

[
Da(1 − Bi)	(1/3)

ra	(2/3)

]3

= 1
3v1

{
	(2/3)
	(1/3)

[
1

Da(1 − Bi)
− v0

v1

]}−3

,

(49b)

where the subscript “a” refers to “association experiment.”
In (49b), we write the braced term in this fashion so the correction due to v0 can

be easily seen. Recall that in deriving (48), we have already taken an asymptotic
limit for small v0. Thus, we should expect that (48) will hold only for those Da
where

1
Da(1 − Bi)


 v0

v1
. (50)

To calculate B̄, we need the integral of β. By defining

I[β; x] ≡
∫ x

0
β(ξ) dξ, (51)

we may write the average (31) in dimensional form, which we do with the aid of
(14a):

B̄(t̃) ∼ Bi + St̃, t̃ → 0, S = k̃onCu{I[β; xmax] − I[β; xmin]}
xmax − xmin

. (52)
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Table 3 Parameter values for Figs. 6–9.

Parameter Value

D̃f (cm2 s−1) 2.8 × 10−7

L (cm) 2.4 × 10−1

RT (mol cm−2) 10−12

Inverting the transform in (48), we have

I[β; x] = χe−νax

νara
[eνax − 1 − |P(4/3,−νax)| + |P(5/3,−νax)|] , (53a)

where P is the normalized lower incomplete gamma function whose definition is

P(m/3,−νax) = γ (m/3,−νax)
	(m/3)

. (53b)

(The notation is from Abramowitz and Stegun (1972).)
To estimate the rate constants from experiments, we proceed as follows. Run-

ning an experiment to steady state will yield an estimate for α, and hence K, from
(41). In order to calculate both the rate constants, we construct a linear fit to our
small-time data, using the slope S in (52) to obtain k̃on. The relationship between
S and k̃on is not linear, as Da also depends on k̃on. Using our estimates for K and
k̃on together, we may calculate k̃off.

In order to visualize the relationship between S and k̃on, we construct a curve
using the parameters in Table 3. For convenience, we define the new variable

k = 10−9k̃on mol s cm−3. (54)

Substituting (54) and our parameters into (50), we find an upper bound on k where
we can still use our solution:

k � 28µr. (55)

In Fig. 6, we plot S versus log10 k for µr = ∞ (the dextran case). This figure is ex-
actly the same as Fig. 4 in Edwards (1999). Since we take Bi = 0 for the association
case, χ = 1 and our expression is independent of K. This will not be the case when
we study a dissociation experiment in the next subsection.

We may asymptotically determine the behavior of S for small k̃on, which corre-
sponds to small k. For small k, ra → 1, so νa → 0 and we have

S ∼ k̃onCuχ, k̃on → 0. (56)

Equation (56) merely shows that if there is no forward reaction (k̃on = 0), then
there will be no change in the bound concentration from the initial state (S = 0).
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Fig. 6 S vs. log10 k. Association experiment, v0 = 0.

Unfortunately, we cannot ascertain the behavior in the case that k → ∞ due
to the form of (49b). As k increases, so will Da, eventually causing the bound in
(50) to be violated. Essentially, because of the faster reaction, we cannot simply
take the first-order convection correction; we must include additional terms in our
analysis.

Next, we vary the viscosity ratio µr, as shown in Fig. 7. The functions plotted
are the same as those in Figs. 2–5. In particular, we plot the difference between S
in the solid dextran case with µr = ∞ and the viscous-dextran case with µr finite.
The corrections are again small, and they are positive, corresponding to increased
transport with increased flow penetration. Also note that the graphs end for dif-
ferent values of k corresponding to the threshold in (55).

Fig. 7 Difference between S with µr = ∞ (solid dextran) and µr finite vs. log10 k for (in decreas-
ing order of thickness) µr = 1, 10, 100. Association experiment.
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6.2. Dissociation experiment

For the dissociation case, the initial condition is the steady state from the associ-
ation problem, given in (41). Thus, the initial condition in (43a) holds even if we
drop the subscript 0. In addition, the leading-order concentration is now 0, not 1.
Thus, the derivation of the equation analogous to (48) becomes

β̂(s) = − K
αrds

(
1 + ν

1/3
d

s1/3

)
, (57)

rd = 1 −
(

K
α

)
Da

v0

v1
, (58a)

νd = 1
3v1

[
Da(K/α)	(1/3)

rd	(2/3)

]3

= 1
3v1

{
	(2/3)
	(1/3)

[
1

Da(K/α)
− v0

v1

]}−3

, (58b)

where the subscript “d” refers to “dissociation experiment.”
Examination of (57) shows that the sole structural change we have made is to

replace χ by −K/α on the right-hand side; the other changes are limited to the
parameters only. Thus, (53a) is replaced by

I[β; x] = − Ke−νdx

νdrdα
[eνdx − 1 − |P(4/3,−νdx)| + |P(5/3,−νdx)|] . (59)

Using our new initial condition, we write our average as

B̄(t) ∼ 1
α

+ St̃, t̃ → 0,

where S is defined in (52). Note from (59) that the slope is now negative, as ex-
pected for our dissociation problem.

We carefully analyze the behavior of S with respect to k, beginning with the
case where v0 = 0. In Edwards et al. (1999), the authors kept K fixed and varied
k̃on, which necessitated (tacitly) varying k̃off. In contrast, here we wish to keep k̃off

fixed, which means that K will vary as k̃on does. We choose the value from Yarmush
et al. (1996):

k̃off = 8.9 × 10−3

s
, (60)

which is in the middle of the range of k̃off values in the experimental literature (see
Edwards (1999) for more values).

Figure 8 shows a graph of S versus log10 k. Careful readers will note that with
the exception of the sign, which is just a change in convention, the main difference
between the graphs here and in Edwards et al. (1999) is in the asymptotes, which
we now examine.
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Fig. 8 Thick line: S vs. log10 k, keeping k̃off fixed. Thin line: large-k asymptote. Dissociation ex-
periment, v0 = 0.

For the small-k̃on asymptote, we first note that

lim
k̃on→0

K
α

= lim
K→∞

K
K + 1

= 1,

since with k̃off fixed, k̃on → 0 forces K → ∞. Then to calculate the asymptote for
S, we replace χ by −K/α in (56) to obtain

S ∼ − k̃onCu K
α

= −k̃onCu, k̃on → 0, (61)

where we have used (28a). Note that (61) holds for all v0.
For the large-k̃on asymptote, we restrict ourselves to the case with no flow: v0 =

0, v1 = 1, which implies that rd = 1. Upon noting that

lim
k̃on→∞

k̃on K
α

= k̃off

Cu
, (62)

we may go on to calculate the limiting value of νd:

lim
k̃on→∞

νd ≡ ν∞ = 1
3Pef

[
	(1/3)
	(2/3)

R̃T Hf

D̃f

k̃off

Cu

]3

, v0 = 0. (63)

This is the key difference from Edwards et al. (1999). In that work, K was kept
fixed, so νd → ∞ as k̃on → ∞. This simplified I[β; x] greatly, leading to a rela-
tively simple result for the asymptote. In our case, the asymptote is obtained by
substituting ν∞ into (52) and (59). Note from (62) that when we multiply the k̃on

from (52) with the K/α from (59), we will get a finite result. With the parameters
chosen one can verify that the correct asymptote is

S = −2.24 × 10−3,

as shown in Fig. 8.
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Fig. 9 Difference between S with µr = ∞ (solid dextran) and µr finite vs. log10 k for (in decreas-
ing order of thickness) µr = 1, 10, 100. Dissociation experiment.

Next we vary the viscosity ratio µr. From (58b) we see that the relevant inequal-
ity replacing (50) is

α

Da K

 v0

v1
.

Substituting our parameters into the above, we have

2.21 � 69.4µr,

where we have used (60) and (62). Note that this is no longer a bound on k; it is
simply a bound on µr, which is always satisfied experimentally. Thus, our expres-
sions do not break down for large k as in the association case.

Figure 9 is analogous to Fig. 7 for the dissociation case, showing the difference
found when assuming that the dextran is viscous, rather than solid. Note that the
change to S is negative (enhancing dissociation), but quite small. Note also that
the curves extend all the way to the right; they are not truncated by a bound on k.

7. Conclusions

To understand certain biological systems, scientists need accurate estimates for
the rate constants of the underlying chemical reactions. With the advent of SPR
technology and the BIAcore, scientists have access to real-time data of binding in
a controlled setting. However, such technological advances are useless without the
necessary mathematical models to interpret the data properly.

In order to help explain anomalous readings from the BIAcore, it has been the-
orized (Witz, 1999) that buffer flow from the channel penetrates into the dextran
gel layer. This would introduce convection effects into the layer, whereas previ-
ous models considered only diffusive effects. Since convection is a more efficient
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mode of transport in the BIAcore, it was suggested that such flow penetration
would speed the reaction.

Though our results confirm this hypothesis, they also demonstrate that, at least
in the case of a surface reaction model, these penetration effects are negligible.
Though we developed our theory by treating the dextran gel as a viscous fluid,
the thinness of the gel layer indicates that even more realistic models, such as the
polymer brush model in Witz (1999), will not produce appreciable changes in the
results obtained.

The small parameter Hr manifests itself in the small size of the velocity within
the dextran gel. The correction for small Hr is most succinctly stated in (32);
namely, the slip condition at the flow–gel interface introduces a local deple-
tion term that complements the integral depletion term from the no-penetration
case.

Since (32) is a nonlinear equation, we obtained analytical results in two ways.
Since most experiments are designed to have Da � 1 to mimic the standard well-
mixed kinetic theory, we calculated the first-order correction in the case that Da →
0. We showed that the only difference between the penetration and no-penetration
case is the form of the function h(x), as defined in (38). Because of this similarity,
we could derive not only solution profiles for B, but also an ERC equation, which
can be used to fit sensogram data directly. However, as discussed earlier, none of
the corrections due to penetration were appreciable.

In order to analyze experiments that cannot be designed such that Da � 1, we
also presented the theory for the moderate Da case. Here we may fit a short-time
slope of the sensogram data in order to construct estimates of the rate constants.
The corrections due to flow penetration manifested themselves only in the param-
eter definitions in (49); the rest of the theory is the same as in the no-penetration
case. Because of the nature of these corrections, we could not construct results for
cases where Da → ∞; however, these cases do not occur experimentally.

For completeness, we examined both association and dissociation experiments,
providing (when possible) both large- and small-k̃on behavior of the small-time
solution. For the dissociation experiments, we kept k̃off fixed, in contrast to
Edwards et al. (1999). However, any differences between the results of this pa-
per and that one were minor, not fundamental. In any event, the corrections from
the no-penetration case were small.

It can be shown that the same negligible corrections will also occur when the
reaction zone is considered to be a layer, not a surface (Edwards, submitted).
Thus, flow penetration effects are not a likely candidate for explaining anomalous
BIAcore measurements, and other avenues, such as steric hindrance effects or con-
formational changes, should be explored.
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Table A.1 Additional parameter values of interest.

Parameter Value Reference

Hf (cm) 5 × 10−3 BIAcore, Inc. (undated)
Hg (cm, CM5 chip) 10−5 Hoffman et al. (2000)
Hg (cm, F1 chip) 3 × 10−6 Maquart (2005); Parsons and Stockley (1997)
V (cm s−1, upper bound) 40 Myszka (1997)
ν (cm2 s−1) 10−2 Bird et al. (1960)

Appendix

Table A.1 lists additional parameters needed for our computations. First, we
verify that the laminar flow assumption is indeed valid. The appropriate Reynolds
number for the flow is

Re = Vf Hf

ν
,

where ν is the kinematic viscosity of the buffer fluid, which we take to be that
of water. Using the parameters in Table A.1 in the equation above, we obtain
Re = 20 as an upper bound (since the value for Vf in Table A.1 is an upper bound).
Thus, we are well within the laminar regime.

BIAcore sensor chips come in three thicknesses. Chips such as the C1 have
no dextran layer at all (Hoffman et al., 2000), thus eliminating flow penetration
from the analysis. Unfortunately, only certain types of receptors can be bound di-
rectly to the gold surface. The thicknesses of the other types of chips are given in
Table A.1. We note from these values that the upper bound on Hr is given by

Hr = Hg

Hf
= 2 × 10−3,

and with the F1 chip it is even smaller.
From Table 2 we have that Pe−1/3

f = 1.39 × 10−1. Thus, as indicated in the text,
the gel layer is much thinner than the unstirred layer. In particular, this implies
that

v0 = Pe1/3
f vf(0) = 1.44 × 10−2

2 × 10−3 + µr
.

Since µr ≥ 1 by definition, the flow in the gel layer is going to be very small. Be-
cause v1 ≈ 1, the actual numerical correction to our solutions will also be very
small, since

v0

v1
= 1.44 × 10−2

µr − 4 × 10−6
.
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