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Abstract. When estimating rate constants using the BIAcore surface plasmon resonance
(SPR) biosensor, one must have an accurate mathematical model to interpret sensogram
data. Several models of differing complexity are discussed, including the effective rate con-
stant (ERC) approach. This model can be shown formally to be good within O(Da) in the
limit of small Damköhler number Da, which is the ratio of the reaction rate to the rate of
transport to the surface. Numerical results are presented that show that except for very slow
reactions, parameter estimates from the ERC model are very close to those estimated using a
more complicated model. The BIAcore measures the behavior of an evanescent wave whose
signal strength decays as it penetrates into the device. It is shown that this decay does not
appreciably affect the sensogram readout at low Da, but at moderate Da can lead to situations
where two vastly different rate constants can produce the same short-time sensogram data.

1. Introduction

A necessary part of understanding many biological processes is the determination
of the speed at which the underlying biochemical reactions occur. Thus, scientists
need ways to estimate accurately the rate constants for any given reaction. Such
measurements can be most readily obtained from real-time measurements of the
species evolution for a particular reaction. One popular device for obtaining such
data is the BIAcore, which is a surface plasmon resonance (SPR) device.

The configuration of the BIAcore is described in great detail elsewhere [17,18,
20,32]. We present a brief review for our purposes (see Fig. 1). The BIAcore device
consists of a rectangular channel through which one of the reactants (the analyte)
is convected in standard two-dimensional Poiseuille flow from x = 0, the inlet
position. The other reactant (the receptor) is embedded in a thin dextran matrix
attached to the ceiling of the channel.

Clearly the BIAcore does not replicate systems where two reactants are mixed
in solution. Regardless, many bimolecular biochemical reactions of interest occur
between a reactant confined to a thin layer about a surface and one floating freely
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Fig. 1. Schematic of the BIAcore device.

in solution. Models for blood clotting treat the vessel as a reacting wall [1]. Drugs
related to distamycin bind to reacting sites on the surface of a much larger DNA
molecule [19]. Immunoglobulins are transmitted to newborns from mother’s milk
through binding to receptors on intestinal epithelial cells [27]. Cytoplasmic signal-
ing and adapter molecules interact with the cytoplasmic tails of receptors embedded
in the plasma membrane [13]. Antibodies bind to chemokine receptors in the sur-
face-volume geometry [15]. Gene expression is significantly influenced by DNA-
protein interactions in these geometries [32].

To measure binding in the BIAcore, an evanescent wave is bounced off the chan-
nel ceiling and read by a detector. As the experiment progresses, binding causes
analyte molecules to dislodge solvent molecules. Since the analyte and solvent have
different indices of refraction, binding causes refractive changes to the polarized
light beam. These changes, when compared to a control state, can be translated into
a sensogram of the binding [10]. The strength of the beam decays as it penetrates
into the dextran layer [17,20,28], and so reactions occuring closer to the channel
ceiling will be weighted more strongly than those near the dextran-flow interface.
The sensogram data is then transferred to a regression program which predicts the
rate constants using an appropriate mathematical model.

In the next section, we summarize several models used to obtain rate constants,
then examine two cases in detail. First, we compare a simple ordinary differential
equation (ODE) model (that contains many assumptions about the device) with
a more precise (and more complicated) integrodifferential equation (IDE) model.
Previous analyses [8] have shown that the predicted bound-state profiles from the
two models compare favorably. However, for experimental purposes parameter
estimates are more useful, so in this work we compare the rate constant estimates
from the two models. The parameter estimates from the simpler model compare
favorably with those of the IDE model in all but the slowest reactions.
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Second, we expand previous analyses to include the effect of evanescent wave
decay, and its incumbent weighting of the reaction signal depending on distance
from the channel ceiling. In most experimental cases the effect of wave decay is
insignificant. Nevertheless, in transport-limited cases the same short-time senso-
gram data can be generated by two different sets of rate constants via the same
model, making such data useless for parameter estimation.

2. Various mathematical models

We first examine the standard evolution equation governing the evolution of the
bound state B̃ (the tilde notation refers to variables with units). In the BIAcore, the
equation is given by

∂B̃

∂t̃
= ka(CT − C̃�)(R − B̃) − kdB̃, (1)

where ka and kd are the association and dissociation rate constants, R is the initial
number of empty receptor sites, and C̃� is the deviation of the analyte from the
inlet concentration CT. Thus in order to estimate rate constants from BIAcore sens-
ograms, one must have an accurate mathematical model for the dynamics in the
device in order to determine C̃�. We summarize three major categories of models
below; they are listed in decreasing order of complexity.

2.1. Partial differential equation (PDE) models

In order to capture every detail of C̃� in the BIAcore accurately, one must solve a
convection-diffusion PDE in the bulk flow, which is assumed to be standard channel
flow in the x̃-direction [3]:

∂C̃�

∂t̃
= Df

(
∂2C̃�

∂x̃2 + ∂2C̃�

∂ỹ2

)
− V

ỹ

Hf

(
1 − ỹ

Hf

)
∂C̃�

∂x̃
, (2a)

where V is four times the maximal velocity in the channel, Df is the diffusion
coefficient of the analyte in the flow, and Hf is the height of the flow cell. This is
usually done numerically, often with the reacting zone being treated as a boundary
condition where the flux balances [2,11,25]:

−Df
∂C̃�

∂ỹ
(x̃, 0, t̃) = ∂B̃

∂t̃
. (2b)

Alternatively, one may treat the reacting zone as a separate layer in which the
following reaction-diffusion PDE must be solved [28]:

∂C̃�

∂t̃
= Dd

(
∂2C̃�

∂x̃2 + ∂2C̃�

∂ỹ2

)
+ ∂B̃

∂t̃
, (3)

where Dd is the diffusion coefficient in the reacting zone, which is often made of
dextran. In either case, the numerical solution thus obtained for the bound state B̃

can be averaged over the appropriate region to provide data which can be compared
with sensograms.
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2.2. Integrodifferential equation (IDE) models

In most BIAcore experiments, convective effects dominate diffusive effects: this is
indicated by the presence of a large Peclét number Pe, which measures the ratio of
a characteristic diffusion time to a characteristic convection time. Typical BIAcore
experiments have Pe = O(102) [3]. Thus, the dominant contribution to the reac-
tion comes from the concentration in the unstirred Lévêque boundary layer near the
flow-dextran interface [1,3,33]. In the boundary layer, one may simplify Eq. (2a)
to obtain a PDE that can be solved using Laplace transforms. Using this fact, an
explicit expression for the solution to the convection-diffusion equation may be
constructed to within O(Pe−1) [3].

When the receptor layer is treated as a surface, the solution to Eqs. (2) for C̃�

is then given by [8]

C̃�(x, t̃) =
(

Hf

3V D2
f

)1/3
1

�(2/3)

∫ x

0

∂B̃

∂t̃
(x − ξ, t̃)

dξ

ξ2/3 , (4)

where �(·) is the gamma function and x has been scaled by the length L of the
device. Note that Eq. (4) has an elegant physical interpretation: the difference C̃�

between the concentration at x and the inlet concentration is given by the accumula-
tion (integral) of the analyte used up in the reaction (∂B̃/∂t̃) upstream (0 ≤ ξ ≤ x).
The 1/3 scaling properties of the flow near the reacting surface [3,22] determine
the form of the multiplicative factor.

The system for B̃ now consists of Eq. (1) coupled to the nonlinear IDE Eq. (4);
hence we denote such models as IDE models. Due to the large value of Pe, which
renders this approximation extremely accurate, in this work the solution to Eqs. (1)
and (4) is treated as the “true” solution for B̃.

2.3. Ordinary differential equation (ODE) methods

Mathematically, it is often easier to work with scaled quantities rather than dimen-
sional ones. In addition, it can simplify various sorts of parameter estimation. The
technique of global analysis involves fitting sensograms with differing values of
CT to the same model in order to obtain more reliable estimates [25]. By using
dimensionless quantities, the sensograms (now measured as a percentage of CT)
all collapse onto the same graph, thus providing multiple data sets for the same
parameter fit.

When analyzing scaled quantities, the Damköhler number Da arises as a key
parameter:

Da = kaRL1/3

(
Hf

V D2
f

)1/3

= reaction rate

diffusion rate in unstirred layer
, (5)

since C� is proportional to it. Hence in the limit that Da → 0 (which corresponds
to a case where transport effects are negligible), we may expand B̃ asymptotically
as follows:

B̃(x̃, ỹ, t̃; Da) = B̃0(t̃) + DaB̃1(x̃, ỹ, t̃ ) + O(Da2), (6)
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where the spatial uniformity of the first term arises in the physically relevant case
when the initial condition for B̃ is spatially uniform. Upon substitution of Eq. (6)
into Eq. (4), the system becomes linear [5].

Then one can solve for C̃� in Eq. (4) and use the result in Eq. (1) to obtain the
following effective rate constant approximation (ERC) that replaces Eq. (1):

d〈B̃〉
dt̃

= kaCT(R − 〈B̃〉) − kd〈B̃〉
1 + (Da/R)(R − 〈B̃〉)〈h〉 + O(Da2). (7)

Here 〈h〉 is a constant, the average of a function h(x̃, ỹ) that contains all the sec-
ondary effects one wishes to consider, such as device geometry [7], convective and
diffusive transport [2,4,6,23], receptor layer [5,34], and evanescent wave decay
[30]. We shall examine several cases for 〈h〉 below.

The ERC is very useful because it is an equation for 〈B̃〉 alone. 〈B̃〉 is the aver-
age of the bound state over the region sensed by the BIAcore, and hence is directly
related to the sensograms produced by the device. Also, the only value of C̃ needed
in the ERC model is the inlet value CT.

If Da = 0, the denominator in Eq. (7) becomes 1 and we obtain the evolution
equation for two species well-mixed in solution with a high analyte concentration.
In the BIAcore, this corresponds to the limit of infinitely high velocity, which would
overwhelm upstream depletion effects and keep the bulk concentration at the value
CT. Though this well-mixed approximation is occasionally used [14], in practice
there will always be some effect due to transport. Thus if fitting to the well-mixed
model, one would observe that the rate “constants” vary with time due to the pres-
ence of 〈B̃〉 in the denominator, a phenomenon called multiphasic rate constants
[9].

Nevertheless, the simple form of the well-mixed equation makes keeping Da
low a paramount concern in experimental design. Unfortunately, R must be main-
tained at a moderate level to ensure that the signal strength is well above the noise
ratio; this always keeps Da above zero and in some cases can force Da to be quite
large.

Some authors (for example, [18]) try to fit a subset of data near the steady state
to the well-mixed approximation, theorizing that the smaller reactive fluxes near
equilibrium will be less affected by transport. Schuck and Minton [30] have pointed
out that this reasoning is faulty, but the fallacy may now be stated more precisely.
Eq. (7) indicates that the effect of transport in the denominator remains of the same
order of magnitude throughout the entire experiment. Though the absolute effect
of transport may be small near equilibrium, in a relative sense the size is the same.
Thus, doing a fit to the well-mixed case will not yield accurate rate constant esti-
mates unless almost all the receptor sites are used at equilibrium, in which case
〈B̃〉 ≈ R and the denominator is approximately equal to 1.

Lastly, note that the denominator of Eq. (7) may be related to the Onsager
coefficient On = ka(R − B̃) [2]:

1 + (Da/R)(R − 〈B̃〉)〈h〉 = 1 + 〈h〉
(

HfL

V D2
f

)1/3

〈On〉.
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3. Using the ERC for high Da

Equation (7) was derived (and can be proven valid) in the limit of small Da [6]. How-
ever, unlike many asymptotic formulæ, there is nothing in the form of Eq. (7) that
diverges or otherwise inherently signals its breakdown when Da is not small. Due
to the more complicated nature of IDE or PDE models, it would be extremely useful
to establish the efficacy of the much simpler ERC in cases where Da = O(1). Since
the analytical result can be shown only for small Da, we must rely on numerical
evidence.

When the reacting zone is treated as a surface, the constant 〈h〉 in Eq. (7) is
given by [8]

〈h〉0 = 35/3(x
4/3
max − x

4/3
min)

4�(2/3)(xmax − xmin)
, (8)

where the subscript zero is added for reasons that will become clear below. Here
xmin and xmax are the endpoints of the scanning range over which the mass changes
are averaged.

Edwards and Jackson [8] compare the ERC solution 〈B̃〉 of Eq. (7) with the
solution B̃ of Eqs. (1) and (4), averaged over the scanning range. As parameters,
they use Da and a dimensionless affinity constant

K = kd

kaCT
= time scale for association

time scale for dissociation
.

Note from their forms that given values for K and Da, both rate constants can be
determined since all the other experimental parameters are assumed known.

The authors take K = 1 and examine numerical simulations for a wide range
of Da, each taken to steady state. The simulations were generated without noise, as
any such noise would affect each model similarly. In their simulations, they estab-
lish that the profiles for 〈B̃〉 given by Eq. (7) and the solution B̃ of Eqs. (1) and (4)
do not differ by more than 3%, even in the transport-limited case where Da → ∞.
Though these results are encouraging, they do not address the central issue: Estimat-
ing the rate constants. Therefore, we examine the difference in parameter estimates
between solutions to the ERC and IDE models.

In order to generate the results, we use the coding algorithm outlined in Edwards
and Jackson [8] to solve Eqs. (1) and (4). Initially we take K = 1 and let Da vary.
The solution thus constructed utilizes only the large Pe approximation, and hence
most closely represents the true sensogram data. This solution is passed to Matlab
as the experimental data, and we use the lsqcurvefit command to fit the data
to Eq. (7). The command yields the value of Da which best fits the data.

The results are shown in Fig. 2. As expected for small values of Da, where we
know the ERC to be a good approximation, the estimated value of Da is extremely
close to the true value. Looking at larger values of Da, though the estimated values
of Da have drifted from the true values, the percentage error is quite small—cer-
tainly within experimental tolerances. Thus after examination of Fig. 2 we may be
led to conclude that the effective rate constant approximation will always provide
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Fig. 2. Graph of the ratio of the ERC to IDE estimates of Da. The ERC estimate is calculated
by using Eq. (7) as a model to the solution of Eqs. (1) and (4) with K = 1. The diamonds
are the data points computed; they would lie on the line y = 1 (where the x-axis crosses) if
the IDE and ERC models were identical.
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-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -3 -1 1 3 5

ln K

ln
 e

st
im

at
e

Estimate

True Value

Fig. 3. Log-log graph of the estimate of K calculated by using Eq. (7) as a model to the
solution of Eqs. (1) and (4) with Da = 10. The diamonds are the data points computed; the
line shows where the data points would lie if the IDE and ERC models were identical.

accurate estimates of the rate constants. Unfortunately, that is not always the case,
as can be seen in Fig. 3.

In Fig. 3, we examine the case where Da = 10. This corresponds to a case
where transport effects are quite pronounced. We again generate “experimental
data” using Eqs. (1) and (4) for various values of K . Then this data was fit in
Matlab to Eq. (7), except in this case K was returned as the best-fit parameter. For
large values of K , the estimate is again indistinguishable from the true value, and
this close agreement extends to moderately small values of K . On the other hand,
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for very small values of K , the estimate widely diverges from the true value. (For
instance, the data point for the smallest value of K is off by a factor of 3.)

How then to explain the discrepancy between the two figures? Since transport
effects slow the reaction process, an experiment with a high value of Da will take
longer than one with a smaller value of Da. In addition, the percentage of receptors
bound when the experiment reaches steady state is given by (K +1)−1 [3]. Thus for
a fixed value of Da (and hence ka), varying K will vary the length of the experiment.
Smaller values of K correspond to longer experiments.

A reaction where transport is important will proceed more slowly than the
“ideal” case where transport is negligible. This difference in speed will accumulate
over time. Thus the longer the experiment takes (as measured on the reaction time
scale), the more suspect the parameter estimates should be. Since even the sim-
plest model can provide order-of-estimate sizes for the reaction time scale, a single
injection run can provide insight as to whether the ideal case estimates should be
suspect.

4. The evanescent wave layer

The reacting zone in the BIAcore is actually a layer (usually receptors embedded
in dextran) of width Hd. The BIAcore measures the refractive behavior of an eva-
nescent wave that bounces off this dextran matrix. Mass changes are averaged over
the scanning range, and measurements returned in terms of response units. Due to
the nature of the instrument, the signal decays with distance from the ceiling of the
device (see Fig. 1).

The presence of the dextran layer affects the transport process, hindering dif-
fusion to reacting sites. This effect can be exacerbated by the decay length of the
wave layer. One can envision a very poorly designed experiment where the dextran
layer is thick and presents a high barrier to diffusion. In such an experiment, the
binding would occur in a thin zone about the dextran-flow interface. If the wave
decays quickly compared to the dextran thickness, it would not reach the area where
binding had occurred, and the sensogram would show few response units. Clearly
this is an extreme case, but in the remaining sections we quantify the decay effects
more precisely. In this way, we can determine when it is necessary to include these
effects in the analysis of an experiment.

We work with scaled variables, which we denote without tildes. We scale the
analyte concentration by CT and the bound state by R. (Here we have assumed the
initial receptor density to be uniform in x and y; further remarks on this point may
be found in the discussion section.) Lengths in the y-direction (normal to the flow)
are scaled by Hd, and y = −1 is taken to be the channel ceiling.

Since our work here concerns the effectiveness of the sensogram measurement
of the binding, rather than the actual binding itself, we refer readers interested in
those details to Edwards’ work [5] on the binding in a receptor layer. With these
scalings, Eq. (3) becomes

∂2C�

∂y2 = −DaD
∂Bd

∂t
, (9a)
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D = Df/(Hf Pe−1/3)

φDd/Hd
= diffusion “velocity” in diffusive boundary layer

diffusion “velocity” in dextran
, (9b)

where φ is the partition coefficient. Here D is a dimensionless parameter that char-
acterizes the effect of the dextran on diffusion; D = 0 corresponds to reaction on
a surface.

Then by introducing a new function F , one can rewrite the expression for C�

as [5]

C�(x, y, t) = −Da

[
DF − 1

31/3�(2/3)

∫ x

0

∂F

∂y
(x − ξ, 0, t)

dξ

ξ2/3

]
, (10a)

∂2F

∂y2 = ∂B

∂t
,

∂F

∂y
(x, −1, t) = 0, F (x, 0, t) = 0. (10b)

Here the second term in the bracketed equation is a function of only x and t chosen
to satisfy the boundary conditions.

For the decay rate K(y) of the wave, we postulate the simplest possible form,
namely

K(y) = e−δ(y+1), δ = Hd/Hw, (11)

where Hw is the penetration depth of the wave, which ranges between 1 and
2×10−5 cm [17,20,28].

δ is the key parameter in this analysis, as it measures the effect of the decay.
Here δ = 0 corresponding to a wave that propagates infinitely far into the device.
Since this corresponds to perfect averaging over the entire receptor layer, we call
this the “perfect case”. Since the height of the dextran layer in the standard CM5
chip is about 10−5 cm [26], δ is typically between 0.5 and 1. See the Appendix for
a fuller range of experimentally realizable values of δ.

Using our expression for K(y) given in Eq. (11), the averaging takes the fol-
lowing form:

〈B̃〉(t) = K0R

∫ xmax

xmin

∫ 0

−1
e−δ(y+1)B(x, y, t) dy dx,

(12)
K0 = δ

(1 − e−δ)(xmax − xmin)
,

where 〈B̃〉 is now the sensogram response. Here K0 is a normalization factor which
ensures that 〈a〉 = a for any constant a. By taking δ �= 0, the effects of decay are
included. We now examine the deviation of the δ �= 0 case from the perfect case
where δ = 0.

5. Small Da

5.1. Explicit solution

In this section we specialize to the case where the initial state for B is the constant
value zero. Thus we may expand our expression for B as in Eq. (6). Since B0 is
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uniform in x and y, it is unaffected by the wave decay. We may also expand F in
a perturbation series in Da. These expansions linearize Eq. (10a), which allows us
to write B1 as [5]

B1(x, y, t) = −e−αt

α

(
e−αt − 1

α
− Kt

){
D

[
y(y + 2)

2

]
− 32/3x1/3

�(2/3)

}
, (13)

where α = K + 1.
One can verify that the coefficient of the braced term is positive; hence the

y-dependent term shows that the concentration of the bound state at the channel
ceiling y = −1 is smaller than at the flow interface y = 0. This is consistent with
the result that diffusion is slowing transport through the dextran layer.

To examine the sensogram data, we average the y-dependent term including
the δ-term using Eq. (12) and obtain〈

y(y + 2)

2

〉
= −p(δ), p(δ) = δ2 + 2[(δ + 1)e−δ − 1]

2δ2(1 − e−δ)
. (14)

It can be shown that p(δ) ∼ (1/3) + (δ/24) as δ → 0, so the decay effect is O(δ)

as δ → 0. Moreover, it can be shown that 1/3 ≤ p(δ) < 1/2, which is a very
narrow range. Thus we do not expect evanescent wave decay to have much effect
upon the sensogram in this case.

Averaging Eq. (13) using Eq. (14), we have the following:

〈B1〉(t; δ) = e−αt

α

(
e−αt − 1

α
− Kt

)
[Dp(δ) + 〈h〉0], (15)

where we include the δ to indicate explicitly the fact that we are considering the
wave decay in our analysis. In order to verify our hypothesis that the solution does
not vary appreciably with δ, we generate plots using the parameters listed in Table 1.

Figure 4 shows a graph of the difference between the first-order correction
〈B1〉(t; δ) (including wave decay) and 〈B1〉(t; 0) (ignoring wave decay) for vari-
ous values of δ. The range of δ is justified in theAppendix. Note the very small scale
on the y-axis, confirming that for small Da the effect of wave decay is negligible.
Note that as δ increases, the effect due to transport is magnified, as the averag-
ing doesn’t include the whole dextran layer evenly. Also, the difference is always
negative, as the wave decay will always cause a smaller response unit reading.

Table 1. Parameters for Figs. 4 and 5. The value of D comes from the Appendix; all others
come from [5].

Parameter Value Parameter Value

CT (mol/cm3) 10−11 t 10−3 t̃/s
D 1.20 × 10−1 xmax 7.92 × 10−1

Da 10−1 xmin 2.08 × 10−1

K 1 α 2
k̃on (cm3mol−1s−1) 108
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Fig. 4. The y-axis shows the difference between the solution 〈B1〉(t; δ) including the wave
decay and the solution 〈B1〉(t; 0) ignoring it. The lines are for (in increasing order of thick-
ness) δ = 0.05, 0.16, 0.5, 1.6, and 5.

5.2. Effective rate constant solution

Next we turn our attention to obtaining results from the ERC model. Again, we
are considering only the averaging so we may use the results from Edwards [5].
Since in the small Da case the leading order of B is spatially uniform by Eq. (6), to
solve for h we essentially solve the operator in Eq. (9a) with a constant right-hand
side. To aid comprehension, in this paper we have changed the sign convention to
indicate that the denominator is always larger than 1 because transport slows the
reaction. Thus when quoting the result from [5] we change the sign of h to obtain

h(x, y) = −D

[
y(y + 2)

2

]
+ 32/3x1/3

�(2/3)
,

where the Da term on the right-hand side of Eq. (9a) is accounted for in the denom-
inator of Eq. (7).

Thus upon averaging we have the following:

〈h〉(δ) = Dp(δ) + 〈h〉0, (16)

which is exactly the bracketed quantity in Eq. (15). Note that 〈h〉 = 〈h〉0 when
D = 0: hence the subscript. Because of the small variance in p(δ), we again expect
little change in our solutions for various values of δ. We verify this with the plots
in Fig. 5.

Figure 5 shows a graph of the difference between the ERC solution 〈B〉(t; δ)

(including wave decay) and 〈B〉(t; 0) (ignoring wave decay) for various values of
δ. The scale on the y-axis is even smaller, since now the effect of the small Da
has also been plotted. Thus, we see the neglibility of the decay effect for small Da.
Again increasing δ causes a larger negative difference in the sensogram reading.
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Fig. 5. The y-axis shows the difference between the solution 〈B〉(t; δ) of Eqs. (7) and
(16) including the wave decay and the solution 〈B〉(t; 0) ignoring it. The lines are for (in
increasing order of thickness) δ = 0.05, 0.16, 0.5, 1.6, and 5.

6. Moderate Da

In the case of moderate Da, the IDE model now encompasses three equations:
Eqs. (1) and (10). The equations are coupled in a nonlinear fashion and hence
cannot be solved explicitly. Since we now have no small parameter with which to
linearize our equations, we turn instead to a small variable, namely t .

In particular, we let B(x, y, t) ∼ β(x, y)t for small (dimensionless) t . With
the scalings in [5], this implies that the dimensional time t̃ 
 (kaCT)−1. (Again,
an order-of-magnitude estimate of ka can be obtained with even the simplest well-
mixed model.)With this assumption, F(x, y, t) ∼ F1(x, y). Thus F can be replaced
with F1 in Eq. (10a), and Eq. (10b) becomes

∂2F1

∂y2 = β,
∂F1

∂y
(x, −1) = 0, F1(x, 0) = 0. (17)

Substituting Eqs. (10a) and (17) into the dimensionless form of Eq. (1) and matching
the leading-order terms, we obtain

1 − ∂2F1

∂y2 = Da

[
1

31/3�(2/3)

∫ x

0

∂F1

∂y
(x − ξ, 0)

dξ

ξ2/3 − DF1

]
. (18)

The solution process for Eq. (18) is as follows. By taking Laplace transforms,
one can write Eq. (18) as an ODE for F̂1, the Laplace transform of F1, which
includes the boundary condition dF̂1/dy(0) as a parameter. We solve the resulting
equation and substitute the result into Eq. (17) to obtain β̂, the Laplace transform
of β:

β̂ = 1

s

cosh λ(y + 1)

cosh λ

(
1 + µ1/3

s1/3

)−1

,

(19)

µ = 1

3

[
Da�(1/3) tanh λ

�(2/3)λ

]3

, λ2 = DDa.
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Thus the leading-order variance in y is no longer parabolic as in Eq. (13), but is
now in the form of a hyperbolic function.

With this short-time asymptote of the data, we may fit rate constants by exam-
ining the slope of the sensogram near t = 0. Then 〈B̃〉(t̃) ∼ RSt̃ , where [5]

S = kaCT{I[β̄; xmax] − I[β̄; xmin]}
xmax − xmin

, I[β̄; x] =
∫ x

0
β̄(ξ) dξ. (20)

In Eq. (20) the averaging has been done in two steps. β̄ represents the average of β

in the y-direction only, while the actual fraction with the I operator performs the
averaging in the x-direction.

With the hyperbolic form of β̂, the y-averaging is more complicated, producing
the following result for I[β̄; x]:

I[β̄; x] = e−µx

µ

f (λ, δ)

2 cosh λ

[
eµx − 1 − |P(4/3, −µx)| + |P(5/3, −µx)|] , (21a)

f (λ, δ) = δ

1 − e−δ

[
e(λ−δ) − 1

λ − δ
− e−(λ+δ) − 1

λ + δ

]
, (21b)

where P is the normalized incomplete gamma function. It can be shown that
f (λ, δ) = (2 sinh λ)/λ + O(δ) as δ → 0. Thus the correction is O(δ) as δ → 0,
just as in the small Da case.

Using the small- and large-µ behavior of the P function, the small- and large-ka
behavior of S can be ascertained. For small ka, we obtain

S ∼ kaCT, ka → 0. (22a)

In this case, the effect of δ is negligible because the reaction is infinitely slow. Thus,
the ligand concentration in the dextran layer always has time to become uniform
before the reaction occurs.

On the other hand, for large ka, we have the following:

S ∼
[

34/3CTV 1/3D
2/3
f (x

2/3
max − x

2/3
min)

2�(1/3)RL1/3H
1/3
f (xmax − xmin)

]
δe−δ

1 − e−δ
, ka → ∞. (22b)

As δ → 0, the last fraction tends to 1, which provides a correction to Edwards
[5], Eq. (72b). The presence of a finite asymptote for S in the limit of large ka is
physically reasonable, since no matter how fast the reaction proceeds, the mass
uptake will be limited by the amount of unbound ligand available for assimilation.
Note also that both of Eqs. (22) are independent of D.

In the case of an infinitely-fast reaction, the wave decay has substantial influ-
ence, since the term δe−δ/(1 − e−δ) quickly decreases as δ increases. In the case
of moderate Da and ka → ∞, there is a small reacting zone near the flow interface
where all the binding occurs. As δ increases, areas near the sensor surface (away
from the reacting zone) are weighted more heavily.

Thus we expect a decrease in our signal, which is illustrated in Fig. 6. In order to
simplify some of the computations, we introduce the parameter k, which is simply
a scaled version of ka, in Table 2, which lists the parameters used in Fig. 6.
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Fig. 6. S vs. log10 k for (in increasing order of thickness) δ = 0.05, 0.16, 0.5, 1.6, and 5. As
δ increases, the sensor cannot pick up clustering near the flow interface for high k, and the
signal slope drops.

Table 2. Parameter values for Fig. 6 from [5].

Parameter Value Parameter Value

CT (mol/cm3) 10−11 R (mol/cm2) 10−12

Df (cm2/s) 2.8 × 10−7 V (cm/s) 1
Hf (cm) 5 × 10−3 xmax 7.92 × 10−1

k 10−9ka mol · s/cm3 xmin 2.08 × 10−1

L (cm) 2.4 × 10−1

Figure 6 shows S vs. k on a lin-log scale. Note that as δ increases, the slope of
the signal curve actually has a maximum for some value of k. As k increases beyond
this point, the reaction is occurring so fast that ligand molecules do not have time
to diffuse closer to the channel ceiling. Though the reaction is speeding up, there
is less binding within the decay length of the evanescent wave. Thus the slope of
the signal begins to decrease, eventually going to zero at very high ka. Since the
same slope S now corresponds to two different possible values of ka, in this case it
is impossible to determine the value of the rate constants from short-time data.

Other authors have tried to estimate rate constants in the transport-limited case
using a subset of the data [18]. However, there are two key differences between the
approach in [18] and the one here. First, the subset taken is near the beginning of the
experiment, rather than the end. More importantly, in [18] the effects of transport
on the data subset are ignored. In our case, the short-time data is used because it is
the only set that can be fit (easily) to the nonlinear model that includes transport.

Clearly the rate constants estimated from any sensogram depend on the model
used; that is why the transport effects have been included in the first place. But
other effects can be incorporated as well. In particular, Glaser and Hausdorf [12]
and Morton et al. [24] demonstrated that incorporating the effects of conforma-
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tional change into the model will significantly affect the rate constants estimated.
Schuck [29] notes that non-specific binding can affect the diffusion coefficient in
the dextran, thus changing the effective rate constant. Karlsson and Fält [17] showed
that the same data could fit parallel, competitive, and two-state reaction models. In
contrast, our result is novel because it shows that the same model can provide two
different rate-constant estimates for the same data due to the nonuniformity of the
signal response.

7. Dissociation Experiments

We now make some brief remarks regarding dissociation experiments. Assuming
that the dissociation phase begins after the association phase has run to completion,
the initial state for B is given by α−1. In addition, the analyte is considered to be
totally removed from the flow during this phase, so CT = 0. Since the actual bind-
ing results are the same as in Edwards [5] and considerations of the decay length δ

are exactly as above, only a brief summary is presented.
In the case of an explicit expression for small Da, we have from Eq. (76) in

Edwards [5] that

B1(x, y, t) = Ke−Kt

α

(
t + e−Kt − 1

Kα

){
32/3x1/3

�(2/3)
− D

[
y(y + 2)

2

]}
,

and hence using our averaging trick we obtain

〈B1〉(t; δ) = Ke−Kt

α

(
t + e−Kt − 1

Kα

)
〈h〉(δ),

which is analogous to Eq. (15). For the effective rate constant model, the only real
change is that the bulk concentration of analyte is zero, so the governing equation
is Eq. (7) with CT = 0 and 〈h〉(δ) given by Eq. (16).

For the case of moderate Da, B will now be approximated by B(x, y, t) ∼
α−1 − β(x, y)t . Performing a similar analysis to the above, we obtain the follow-
ing new expression for I:

I[β̄; x] = −Ke−µx

αµ

f (λ, δ)

2 cosh λ

[
eµx − 1 − |P(4/3, −µx)| + |P(5/3, −µx)|] ,

where f (λ, δ) is given in Eq. (21b). As is true in the association case, the small ka
limit is the same whether δ = 0 or not:

S ∼ kd

K + 1
, ka → 0.

Also, the large ka-asymptote is provided by the δ = 0 case multiplied by the same
factor as in Eq. (22b):

S ∼
[

34/3CTV 1/3D
2/3
f (x

2/3
max − x

2/3
min)

2�(1/3)RL1/3H
1/3
f (xmax − xmin)

]
δe−δ

(1 − e−δ)
, ka → ∞.
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8. Discussion

To understand certain biological systems, it is vital to have accurate estimates of
rate constants for the underlying chemical reactions. The BIAcore SPR device pro-
vides an excellent way to obtain real-time observations of binding processes, but
such data is useless for parameter estimation without the necessary mathematical
models to interpret it.

Because the receptor sites are embedded in a layer, rather than mixed in solu-
tion, such models must correctly determine C̃�, the deviation of the analyte con-
centration from the inlet (well-mixed) state. PDE models of the type illustrated in
Eqs. (1)–(3) are the most accurate, but must be solved numerically. IDE systems of
the type involving Eq. (1) and either Eq. (4) or Eq. (10) are less complex since each
of the directions may be examined in turn, rather than together, but the resulting
equations still have to be solved numerically. ODE models have the advantage of
being simple to use in conjunction with standard parameter-estimation packages,
but involve many assumptions.

The ERC model given in Eq. (7) can be shown to be accurate to leading two
orders in the case of small Damköhler number Da [6]. By constructing experimen-
tal data using the IDE model and fitting it to the ERC equation, we showed that the
rate constant estimates thus obtained are highly accurate in most cases. In Fig. 3 we
showed that the only significant deviation occurs when the dimensionless affinity
constant K is small and Da is moderate (a case usually avoided by experimental-
ists), which corresponds to a slow reaction. Thus for most practical purposes, using
the ERC will produce rate constant estimates within acceptable tolerances of the
true values.

Since the BIAcore uses a decaying evanescent wave to measure the kinetic
process, it is clear that binding near the flow interface will be weighted less than
binding near the channel ceiling. The real question from an experimental point of
view is whether the decay appreciably affects the measurement of rate constants. In
the case of small Da, the question need not be asked, since the ERC can be adapted
using the p(δ) term to take decay into account. In addition, we demonstrated in
Figs. 4 and 5 that including the effect of wave decay causes negligible differences
in the binding profiles for small Da.

In this paper we assumed that the device has uniform sensitivity along the scan-
ning range. More complicated averaging procedures modeling nonuniform sensi-
tivity could easily be incorporated into the model if experimentally demonstrated to
be necessary. However, given the relatively minor effect of the penetration depth in
most cases, it seems unlikely that a nonuniform sensitivity will appreciably affect
sensogram measurements.

Similarly,weassumedthat the initial receptorconcentrationR isuniforminx and
y. This assumption is more suspect, since the processes by which the receptor sites
are embedded in the dextran may be susceptible to nonuniformities, and in further
work we wish to consider more general cases. Nevertheless, we note that given the
relatively minor effect of spatial nonuniformity demonstrated here, we expect that
such considerations will not substantially affect sensogram measurements except in
cases where they tend to magnify the natural spatial inhomogeneity of the binding.
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In an experimental design context it is critical to keep Da as low as possible
to exploit the simpler models. Unfortunately, doing so simply by increasing the
flow rate will cause D, the ratio of diffusion velocities in the Lévêque layer and
the dextran, to increase. This increases the effect of the dextran layer on the mea-
surements. In addition, there is a lower bound on R that arises from maintaining
enough receptor sites to guarantee a strong sensogram signal [5]. Thus it may not
always be possible to keep Da small.

Unfortunately, when the Damköhler number is not small, the sensogram data
may not be usable at all. Consider the following two cases. In the first, the reaction
is very slow, so despite any transport effects, there is low-level binding throughout
the layer, corresponding to a weak short-time sensogram response. In the second,
the reaction is very fast, so significant binding occurs in a region near the flow inter-
face, far from the channel ceiling. This still yields a weak short-time sensogram
response since the binding is occurring in a region of weaker evanescent wave sig-
nal. Thus, as shown in Fig. 6, the same sensogram short-time data can correspond
to two vastly different reactions.

These results demonstrate the importance of understanding the strengths and
weaknesses of any model one uses for parameter estimation. Clearly the lower that
one can drive the Damköhler number, the better, since then the effects of transport
can be reduced. On the other hand, in cases where the Damköhler number cannot
be made small, the ERC can be used in cases where δ is small. From the results in
the moderate-δ, moderate-Da case, it is clear that such a set of parameters is to be
avoided at all costs if accurate rate-constant estimates are to be obtained.

Nomenclature

8.1. Variables and parameters

If the same letter appears both with and without tildes, the letter with a tilde has
dimensions, while the letter without a tilde is dimensionless. The equation where
a quantity first appears is listed, if appropriate.

B̃(x̃, ỹ, t̃ ): bound ligand concentration at position (x̃, ỹ) and time t̃ (1).
CT: inlet analyte concentration (1).

C̃�(x̃, ỹ, t): deviation in analyte concentration at position (x̃, ỹ) and time t̃

from inlet concentration (1).
D: dimensionless parameter characterizing effect of diffusion in the

dextran layer (9a).
Dd: diffusion coefficient of analyte in dextran (3).
Df : diffusion coefficient of analyte in flow (2a).
Da: the Damköhler number, which measures the ratio of reaction and

diffusion effects (5).
F(x, y, t): function used in the IDE model for the receptor layer (10a).

f (λ, δ): function characterizing averaging in the moderate Da case (21a).
Hd: height of dextran layer.
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Hf : height of flow channel (2a).
Hw: evanescent wave decay length (11).

h(x̃, ỹ): function used in effective rate constant solution (7).
Iβ̄; x: integration operator, defined in Eq. (20) as

I[β̄; x] ≡
∫ x

0
β̄(ξ) dξ.

K(y): kernel of signal measurement operator (11).
K0: normalization factor for signal (12).
K: dimensionless affinity constant.
ka: association rate (1).
kd: dissociation rate (1).
L: length of the channel.

On: Onsager coefficient.
P(·, −µx): normalized incomplete gamma function (21a).

p(δ): average of y-dependent terms (14).
Pe: Peclét number for the system.
R: initial concentration of receptor sites (1).
S: slope of sensogram data for small time (20).
t̃ : time (1).

V : four times the (maximal) velocity of flow at center of channel (2a).
x̃: length along the channel (2a).
ỹ: height from dextran-flow interface (2a).
Z: the integers.
α: dimensionless constant, defined as K + 1 (13).

β(x, y): term in expansion of B(x, y, t) for small t .
�(·): gamma function (4).

δ: ratio of dextran width to wave decay length (11).
λ: dimensionless constant (19).
µ: dimensionless constant (19).
ξ : dummy variable (4).
φ: partition coefficient (9a).

Other notation

max: as a subscript, used to indicate the right endpoint of the scanning
range (8).

min: as a subscript, used to indicate the left endpoint of the scanning
range (8).

n ∈ Z: as a subscript, used to indicate an expansion (6).
¯ : used to denote the mean of the bound concentration in the y-direc-

tion only (20).
ˆ : used to indicate the Laplace transform of a quantity.

〈 〉: used to indicate the mean of the bound concentration in both the
x- and y-directions (7).
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Table 3. Parameter values from the literature.

Parameter
Dd/Df Hd Hw φ

Reference (10−5 cm) (10−5 cm)

[9] 2–5
[16] 1–2
[17] 1.6
[20] 1 1.9
[21] 1
[26] 0.3–1
[28] 0.02–0.1 0.1–1 0.95 0.3–1
[31] 1–2.2
[35] 0.04–0.12 1 0.1–0.25

Appendix

In Table 3 we compile parameter values relevant to the new analysis here; other
parameters may be found in the appendices of [3,5]. The experimental values in
[35] are for a bovine serum albumin/monoclonal antibody system. One may use
various sensor chips of different thicknesses in the BIAcore; hence the varying
values of Hd in the experimental literature. Dd/Df , Hd, and φ vary in [28] because
they are parameters input into numerical simulations.

To calculate the value of D in Table 1, we use the values Pe = 3.71 × 102 and
Hf = 5 × 10−3 cm cited in [3]. For the values of Dd/Df and φ, we take the largest
possible upper bounds to minimize the effects of the layer. (Also, there is some
dispute as to whether for all experimental setups the ratio Dd/Df is as small as
cited.) Using Dd/Df = 0.12 from [35] and φ = 1 from [28], we obtain the value
D = 0.12 in Tab. 1.

With the values in [3], it can be shown that 〈h〉0 = 1.2, an order of magnitude
larger than D, and hence 〈h〉0 is the dominant contribution to 〈h〉 in Eq. (16). This
confirms the small variance in Figs. 4 and 5.

Utilizing the appropriate upper and lower bounds from the literature, we see
that the possible range of values for δ is given by

5.26 × 10−2 ≤ δ ≤ 5.26,

which justifies the range of δ used in Fig. 6.
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