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Abstract-case II diffusion of a penetrant through a polymer matrix is characterized by constant 
front speed. Hence, a traveling-wave analysis is appropriate for the model equations. For the previ- 
ously validated model analyzed here, conditions on the molecular and stress diffusion coefficients are 
obtained which guarantee the existence of a traveling wave. Conditions are derived under which an 
interior maximum in the stress develops. An exact solution for the concentration and stress fields is 
derived for a special case. @ 2004 Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

The designer properties of polymers have made them a preferred material in many industries. For 
instance, polymers are routinely used in conjunction with various penetrants in gaseous or liquid 
form. However, these systems routinely exhibit anomalous diffusion behavior, such as “Case II 
diffusion” [1,2], where a sharp concentration front moves with constant speed. Such behavior can 
be seen in the wetting of hydrogels [3]. 

There are several different models for this phenomenon [4-61; the one we use arises from 
postulating [7] that the chemical potential p is a function of both 6, the penetrant concentration, 
and another variable (5. Using the facts that the flux J = -pls and (?‘t = -Jz, we obtain 

c,= [D(qc?z+E(e)5z],. 
Here D(c) is the standard molecular diffusion coefficient and E(C) is the stress diffusion coeffi- 
cient, which are nonnegative and nondecreasing. 
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An important physical process in Case II diffusion is a viscoelastic stress in the polymer net- 
work [8], so we require that L? (the stress) follows a viscoelastic evolution equation [7,9]: 

at + P(C)& = r/e + YG,. &lb) 

In this way L? can be thought of as an osmotically-induced viscoelastic “swelling pressure” [lo], 
which is related to the trace of the stress tensor in the polymer network [7,9-111. Here ,0(c) > 0 
is the nondecreasing relaxation time for the polymer (treated as a viscoelastic solid). 

2. THE TRAVELING-WAVE SYSTEM 

Both numerical simulations [la] and experimental data (as discussed above) indicate that fronts 
moving with constant speed characterize Case II diffusion. Thus, following [5,11], we look for 
traveling-wave solutions of (1.1) corresponding to a front saturating a dry, unstressed polymer. 
If the saturation value is 1, the boundary conditions are given by 

Zl(co,t) = 0, tqqt) = 0, q-c+) = 1. (2.1) 

Since equations (1.1) can be combined into a single third-order partial differential equation 
for C [9], (2.1) . is sufficient to make our problem well posed. 

To find traveling-wave solutions, we let 

C(rc, t) = C(z), cqqt) = CT(z), z = z - vt, v > 0. (2.2) 

All derivatives of C and 0 vanish as z + fco, so substituting (2.2) into (l.lb) and (2.1) yields 

cc, g)(m) = (0, O), (C,a)(-m) = (I&) = (ho*), 

which yields the necessary value for the upstream stress. 
Substituting (2.2) into (l.la), we obtain the following: 

-VC = D(C)C’ + E(C)d, (2.5) 

where we have used the downstream boundary conditions. If D(0) = E(0) = 0, then it may be 
the case that C(z*) = 0 f or some finite z*, and, moreover, it is possible to obtain the physically 
unreasonable case where C(z) < 0 for some z. Therefore, we require that one of D or E be 
positive. In addition, in order for (1, a,) to be a fixed point, one of D(1) or E(1) must diverge 
so that the corresponding product in (2.5) remains finite. This may seem like an unreasonable 
assumption, but in [13] th e authors perform a similar analysis to obtain solutions of the type 
sought. If we take the more physically reasonable case where either D(1) or E(1) >> 1, we will 
obtain solutions which are nearly like traveling waves in character. 

To analyze system (2.3),(2.5) more completely, we write it as a phase plane system: 

c, = L-V” + VW)] C - P(W(CP 

V[D(C) + vE(C)] ’ 

o, = - [dW + vV2] C + P(W(Ck 
V[D(C) + vE(C)] ’ 

(2.6a) 

(2.6b) 
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Figure 1. Schematic of phase plane 

Then our problem reduces to finding a heteroclinic orbit in the C-a plane between the two points 
in (2.4) (see the schematic of the phase plane in Figure 1). 

A linear analysis of (2.6) about the origin shows that the determinant of the Jacobian is given by 

-P(O)lP(O) + JaO)l < 0, so the origin is a saddle, and our traveling wave solution corresponds 
to one of the two stable trajectories. From (2.Gb), U-E see that the null cline gn(C) along which 
d = 0 is given by 

(2.74 

Since solutions with 0 < oTL have g’ < 0, any solution with 0 < 0 for C > 0 will not return to 
the origin, so our traveling-wave solution always has a > 0. Note from (2.6a) that C’ < 0 when 

PEG > [-vz + rlE(c)j c. (2.7h) 

Thus, any solution with C < 0 for small enough cr will not return to the origin, and hence, our 
traveling-wave solution always has C > 0. Thus, the trajectory must approach the origin from 
the first quadrant (see Figure 1). If a heteroclinic orbit does not exist, the stable saddle point 
trajectory must originate from c = c~. But trajectories with large c~ go to infinity since 0 > c~,& 
and 0’ > 0. Thus, there must be a heteroclinic orbit as shown in Figure 1. 

If we take D(1) = E(1) = oc, C = 1 becomes a fixed line, inconsistent with our wish that 
(l,m*) be the only upstream fixed point. If we take E(1) = M, then at C = 1 (2.6a) becomes 

C’ = 177 - Publlv V, which is positive for (T < c~*. This is the case of sorption overshoot [la]! 
where the concentration can exceed the saturation value. W’c prefer to examine the standard 
case where C < 1 for all Z, so we take D(1) = 00 as in [13]. Since C’(1) = 0 for all 0, C = 1 is a 
trajectory in the phase plane, and our solution always has C < 1 for finite 2. To summarize, in 
order to obtain physically realistic travelin g waves. WC take D(O)E(O) # 0. D(1) = X. 

3. SPECIFIC CASES 

To study the fixed point (1, a,) in detail, we choose a specific functional forrn for D(C): 

D(C) = &* Do > 0, (3.1) I 
in which case (2.6) becomes 

c, = (l _ c) I-V2 + G(C)IC - P(CW(Cb 
V[Dcl+ 4 - Cp-qC)I ’ 

u, = -[qDo + vV*(l - C)]C + P(C)DIP 
V[Do + ~(1 - C)E(C)] 

(3.2) 
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A linear analysis of (3.2) about (1, a,) shows that the determinant of the Jacobian is @(1)/D, > 0. 
Since C = 1 is a trajectory, (1, c*) must be a node. The trace of the Jacobian is [p(l)/V] + 
(V/Do) > 0, so’ (1, u*) is an unstable node, as required. 

To construct o.ur plots, we choose the following functional forms and parameters: 

E(C) = EOC, Eo > 0, (3.3a) 

P(C) = 1+ POC, PO > 0, (3.3b) 

Do = 1, Eo = 1, u = 30, v = 1. (34 

Figure 2 shows solution curves for varying 7; note that an internal stress maximum forms for 
some 7. Figure 1 shows that, if g;(l) > 0, any trajectory with 0 > u* always has U’ > 0. Thus, 
for an internal maximum to occur, a;(l) < 0, which for system (3.2) means that 

v l-g <g [ 1 (3.5) 

As 7 increases, the upstream stress value increases, so the stress buildup during transport will 
not create an internal maximum. 

Figure 2. Phase plane trajectories for parameters in (3.4), /30 = 9, and 17 = 10, 40, 
160, 640 (in decreasing order of thickness). 

(T 

C 

Figure 3. Phase plane trajectories for parameters in (3.4), v = 40, and /30 = l/3, 1, 
3, 9 (in decreasing order of thickness). 

Figure 3 shows solution curves for varying ,Bc. Increasing ,& decreases the relaxation time, so 
imposed stresses will not have time to decay away. Thus, internal maxima will form consistent 
with (3.5), which shows that such maxima depend on the sensitivity of ,B to C at saturation. 

To demonstrate our solution behavior more concretely, we specialize to the case where 

,0(C) = ;. (3.6) 
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Substituting (3.6) into (2.3), we obtain 

-Vud + r/a = u (Ty2 - VYC’) * 0 = UC, (3.7) 

where we have used (2.4). Substituting (3.1), (3.3a), and (3.7) into (2.5), we obtain an equation 
which may be integrated. Choosing C(0) = l/2 yields the implicit solution 

Figure 4 shows a graph of the solution C(Z) in (3.8) for constant V, and varying v,. This can 
occur when either v or Ec varies. If v increases, the stress increases. If Ec increases, the stress 
diffusion coefficient increases. In either case, the stress diffusion term is larger in (l.la), and we 
would expect a less steep profile, as verified in the figure. 

Figure 5 shows a graph of the solution C(Z) in (3.8) f or constant V, and varying VI. As the 
velocity of the traveling wave increases, the relative time for diffusion decreases, and we expect 
a steeper profile, as shown in the figure. 

Figure 4. Graph of (3.8) with V, = 50, v* 
of thickness). 

0:2 0:4 0:6 

= 10, 20, 30, 40, 50 (in decreasing order 

c 

Figure 5. Graph of (3.8) with Y, = 10, V, = 10, 20, 30, 40, 50 (in decreasing order 

of thickness). 

4. CONCLUSIONS 

Since concentration fronts move with constant speed in Case II diffusion, it is natural to look 
for traveling-wave solutions of the governing equations. By analyzing model (l.l), we showed 
that for a true traveling-wave solution to exist, one of the diffusion coefficients in (l.la) must 
diverge as the polymer saturates. However, large diffusion coefficients will provide solutions that 
behave quite similarly to traveling waves. 
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Equation (3.5) shows that if the relaxation time is small, the stress will have an internal 
maximum, as illustrated in Figures 2 and 3. This occurs because stress accumulates inside the 
polymer faster than it can relax away. Though in general explicit solutions of (2.6) do not exist, 
we calculated an explicit solution for a specific case which exhibits the behavior described above. 
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