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Abstract. Many practically relevant polymers undergoing desorption change from the rubbery
(saturated) to the glassy (nearly dry) state. The dynamics of such systems cannot be described by
the simple Fickian diffusion equation due to viscoelastic effects. The mathematical model solved
numerically is a set of two coupled PDEs for concentration and stress. Asymptotic solutions are
presented for a moving boundary-value problem for the two states in the short-time limit. The
solutions exhibit desorption overshoot, where the penetrant concentration in the interior is less than
that on the surface. In addition, it is shown that if the underlying time scale of the equations is
ignored when postulating boundary conditions, nonphysical solutions can result.
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1. Introduction. Over the past few decades, much experimental and theoretical
work has been devoted to the study of polymer-penetrant systems. In particular, the
desorption of penetrants from saturated polymer matrices has been examined due to
its wide industrial applicability. One unusual feature of such systems is the change
in the polymer from a rubbery state when it is nearly saturated to a glassy state
when it is nearly dry. As part of the drying process, a glassy skin often develops at
the exposed surface of a polymer whose properties are significantly different from the
rest of the polymer-penetrant solution [1], [2], [3], [4], [5]. This phenomenon, called
skinning [6], [7], [8], has many industrial applications [8], [9], [10], [11], [12], [13], [14],
[15], [16].

There are many different theories for why the skinning process occurs, including
phase separation [17], crystallization [18], and diffusion-induced convection [19]. Nev-
ertheless, for the systems we wish to study, most scientists agree that one important
factor is a viscoelastic stress in the polymer entanglement network, which can be
as important to the transport process as the well-understood Fickian dynamics [20],
[21], [22]. The size of this stress is related to the relaxation time of the viscoelastic
polymer matrix. In the glassy skin, the relaxation time is finite, so the stress is an
important effect, but in the rubbery region the relaxation time is nearly zero [15], [20],
[23]. Nevertheless, we will show that in order for the mathematical model to yield
physically meaningful results, at some level the short relaxation time in the rubber
must also be taken into account.

Numerical and analytical solutions are derived here for model equations for the
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system described above. Our equations are the same, to leading order, as those for
general polymer-penetrant systems derived in detail by Edwards and Cohen [24], [25],
Edwards [26], Cairncross and Durning [8], Durning [27], and Durning and Tabor
[28]. These models, which are presented in section 2, consist of a set of coupled
PDEs for the concentration and stress. The parameters in the numerical simulation
vary smoothly with concentration, so the glass-rubber interface x = s(t) between the
two states is simply an isocline of concentration. In contrast, the parameters in the
analytical model are assumed to be piecewise constant in the rubber and glass. Thus,
a moving boundary-value problem similar to a Stefan problem results. In each of the
regions a different partial differential operator holds, and continuity conditions at the
glass-rubber interface dictate its motion.

In section 3 we construct a perturbation solution to the equations. The solutions
are expressed as integrals of Green’s functions convolved with fictitious boundary
conditions which provide the new unknowns for which we must solve. In section 4 we
construct short-time asymptotic solutions of the concentration and stress fields. The
form of the short-time solutions necessitates a corner layer, where the full system of
equations holds. The solutions exhibit desorption overshoot, where the minimum in
the concentration occurs in the interior of the domain.

In addition, if we use a standard high-mass-transfer-coefficient approximation
common in diffusion and heat conduction problems, it is possible for the concentration
to become negative. This result is confirmed numerically in section 5. In section 6 it
is explained that the unphysical negative concentration appears because the limit of
high mass transfer coefficient imposes a jump in the exterior concentration faster than
the underlying time scales of the operator. Physically, the polymer is self-regulating
for desorption as well as sorption [24]. A new boundary condition is postulated which
incorporates the time scale in the stress evolution equation, and it is shown that such
a boundary condition does not lead to negative concentrations.

2. Preliminaries.

2.1. Governing equations. We examine the following dimensionless system of
equations for anomalous desorption in a polymer of finite dimensionless length L:

∂C

∂t
=

∂

∂x

(
D(C)

∂C

∂x
+
∂σ

∂x

)
, 0 ≤ x ≤ L,(2.1a)

∂σ

∂t
+
β(C)

βg
σ = γεC +

∂C

∂t
,(2.1b)

where C is the dimensionless concentration of penetrant in the polymer, γ is a dimen-
sionless constant, and L is the length of the slab scaled with the length scale of stress
evolution [29].

The system is described in general in [29] and specialized in [26], but some discus-
sion is required. The flux in (2.1a) can be derived by postulating that the chemical
potential is a function of both C and σ [24], which in one dimension corresponds to
the stress in the polymer network [24], [30], [31], [32]. In (2.1b), the coefficient of
∂σ/∂x has been chosen constant, in contrast to the models of Durning and colleagues
[8], [28], [33].

D(C) is a normalized diffusion coefficient measuring the ratio of the Fickian to
non-Fickian effects in the flux. Also β(C) is the inverse of the relaxation time, which
measures the speed at which changes in one part of the polymer are communicated
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to other parts of the polymer. Both increase dramatically as the polymer goes from
the glassy to rubbery state [15], [20], [23], [34], [35], [36]. In contrast, the differ-
ences in these parameters within states are qualitatively negligible. Therefore, for our
numerical work we assume the following forms for these functions:

D(C) = Dg − Dg −Dr

2
[1 + tanh(α(C − C∗))] ,

α � 1,(2.2)

β(C) = βg − βg − βr

2
[1 + tanh(α(C − C∗))] ,

where C∗ is the value of the concentration at which the glass-rubber transition occurs.
Other physically appropriate forms for β and D are presented in [4], [8], [28], [33],
[34], [35], [36], [37].

We examine a polymer that is initially saturated (and hence rubbery) and un-
stressed, which leads to the initial conditions

Cr(x, 0) = 1, σr(x, 0) = 0.(2.3)

The end x = L is insulated, while at the exposed surface x = 0, the flux is proportional
to the difference between the surface concentration and the environment concentration
Cext: (

D(C)
∂C

∂x
+
∂σ

∂x

)
(L, t) = 0,(2.4a)

(
D(C)

∂C

∂x
+
∂σ

∂x

)
(0, t) = k[C(0, t) − Cext],(2.4b)

where k is a constant measuring the mass transfer coefficient of the exposed interface.

2.2. Two-state formulation. We solve (2.1)–(2.4) numerically in section 5, but
in order to obtain direct dependence of our solution on the physical parameters in the
system, we will solve the problem analytically, which necessitates some simplifications.

As α → ∞, the parameters in (2.2) become piecewise constant:

D(C) =

{
D0ε, 0 ≤ C ≤ C∗,
Dr, C∗ ≤ C ≤ 1,

β(C) =

{
βg, 0 ≤ C ≤ C∗,
βr, C∗ < C ≤ 1.

(2.5)

The rubber is closest to the Fickian regime because the relaxation time is almost
instantaneous; thus βg/βr = ε � 1. It has been shown experimentally [16] that the
diffusion coefficient in the glassy region is quite small, so we let Dg = D0ε, where D0

is an O(1) constant.
With the functional forms in (2.5), it is natural to model the physical system as

a two-state problem with a moving boundary x = s(t) representing the glass-rubber
interface. Thus, making our substitutions into (2.1), we obtain the following in the
glassy region:

∂Cg

∂t
= D0ε

∂2Cg

∂x2
+
∂2σg

∂x2
,(2.6a)

∂σg

∂t
+ σg = γεCg +

∂Cg

∂t
,(2.6b)



DESORPTION OVERSHOOT IN POLYMER-PENETRANT SYSTEMS 101

while in the rubbery region we have

∂Cr

∂t
= Dr

∂2Cr

∂x2
+
∂2σr

∂x2
,(2.7a)

∂σr

∂t
+
σr

ε
= γεCr +

∂Cr

∂t
.(2.7b)

With such a formulation, we must have conditions that hold at x = s(t). We impose
continuity of concentration at the glass-rubber transition value C∗:

Cr(s(t), t) = Cg(s(t), t) = C∗.(2.8)

In addition, we require continuity of stress and flux:

σr(s(t), t) = σg(s(t), t),(2.9a)

(
Dr

∂Cr

∂x
+
∂σr

∂x

)
(s(t), t) =

(
D0ε

∂Cg

∂x
+
∂σg

∂x

)
(s(t), t).(2.9b)

3. Perturbation solution. We assume perturbation expansions for our depen-
dent variables in ε, the small ratio of the relaxation times:

C ∼ C0 + O(ε), σ ∼ σ0 + O(ε),(3.1)

where the same expansions hold for the rubber and glass.

3.1. The glassy region. Substituting (3.1) into (2.6) yields

∂Cg
0

∂t
=

∂2σg
0

∂x2
,(3.2a)

∂σg
0

∂t
+ σg

0 =
∂Cg

0

∂t
.(3.2b)

It is simpler to solve for the stress in the glassy region first; hence we combine (3.2)
to obtain

∂σg
0

∂t
+ σg

0 =
∂2σg

0

∂x2
, 0 < x < s(t).(3.3)

In many industrial applications, fast drying is desirable in order to reduce pro-
duction time and cost. Thus, we consider the case where k → ∞, which corresponds
to high mass transfer coefficient or large driving force. (In certain scaling limits, this
can also correspond to thick films.) Making this substitution in (2.4b), we obtain

Cg
0 (0, t) = Cext < C∗,(3.4)

which locates the glass-rubber interface at the origin for t = 0. This sort of Dirichlet
condition is routinely used in diffusion or heat conduction problems, instead of the
more physically realistic flux or activity balance conditions. Nevertheless, we shall
see that in this context, imposing such a simple boundary condition can produce
unphysical results.
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Equation (3.4) implies that the concentration jumps discontinuously at the origin
from 1 to Cext, so we have the following:

dC

dt
(0, t) = (Cext − 1)δ(t),(3.5)

and upon substituting this result into (3.2b) evaluated at x = 0, we obtain

σg
0(0, t) = (Cext − 1)e−t.(3.6)

Note the exponential decay of surface stress from its initial value, reflecting the mem-
ory effects in the glassy polymer.

In order to solve the problem, we use an integral method first introduced by Boley
[38] and used extensively in this context by Edwards and Cohen [24] and Edwards
[26], [29], [39], [40]. Essentially, we wish to write the solution of (3.3) and (3.6) as a
Green’s function convolved with a fictitious initial condition σg

0(x, 0) = f i(x). This
condition is fictitious because the polymer is not glassy at t = 0. Thus we extend
our domain beyond the region 0 < x < s(t). By writing our solution in this form, we
reduce the problem from a PDE to an integrodifferential equation.

Since all expressions for x > s(t) are fictitious anyway, we embed the problem in
the semi-infinite domain x > 0. The solution then is found to be

σg
0(x, t) = (Cext − 1)e−t erfc

(
x

2
√
t

)

+
e−t

2
√
πt

∫ ∞

0

f i(z)

{
exp

[
− (x− z)2

4t

]
− exp

[
− (x + z)2

4t

]}
dz.(3.7)

3.2. The rubbery region. In the rubbery region we substitute (3.1) into (2.7b)
to obtain

σr
0(x, t) = 0.(3.8)

Since the γ term does not contribute to the dynamics in either the glassy or the
rubbery regions, our model (2.1) contains exactly those dynamical processes as in the
models of Cairncross and Durning [8], Durning [27], and Durning and Tabor [28].

Substituting (3.1) and (3.8) into (2.7a) yields

∂Cr
0

∂t
= Dr

∂2Cr
0

∂x2
, s(t) < x < L, 0 < t < tL,(3.9a)

where s(tL) = L. To use Boley’s method to rewrite our solution, we note that upon
substituting (3.1) and (3.8) into (2.4a), we obtain

∂Cr
0

∂x
(L, t) = 0,(3.9b)

and hence x = L is a line of symmetry. Thus by the method of images

Cr
0(x, t) = 1 − [T r(x, t) + T r(2L− x, t)](3.10a)

is a solution to (3.9) and (2.3) if T r(x, t) is a solution of the heat equation. Since the
rubber occupies the region s(t) < x < L, the fictitious condition is T r(0, t) = fb(t),
so T r is given by

T r(x, t) =
x

2
√
Drπ

∫ t

0

fb(z)

(t− z)3/2
exp

[
− x2

4Dr(t− z)

]
dz.(3.10b)
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Substituting (3.1) and (3.8) into (2.8) and (2.9), we obtain

Cr
0(s(t), t) = Cg

0 (s(t), t) = C∗,(3.11a)

σg
0(s(t), t) = 0,(3.11b)

Dr
∂Cr

0

∂x
(s(t), t) =

∂σg
0

∂x
(s(t), t).(3.12)

Upon substitution of (3.7) and (3.10) into (3.11) and (3.12), we will obtain three
integrodifferential equations for the unknowns f i, fb, and s.

4. Short-time solutions.

4.1. The outer solution. We examine the small-time asymptotics of our ana-
lytic solution as in Edwards [26] by letting

f i(x) ∼ f i
0, fb(t) ∼ fb

0 , s(t) = 2s0t
n, t → 0, x → 0.(4.1)

We substitute (4.1) into (3.10) and (3.7) to obtain expressions for our unknowns for
L = O(1). Substituting these expressions into (3.11) and (3.12), we obtain

C∗ ∼ 1 − fb
0 erfc

(
s0t

n−1/2

√
Dr

)
,(4.2a)

0 ∼ (Cext − 1) erfc(s0t
n−1/2) + f i

0 erf(s0t
n−1/2),(4.2b)

Drf
b
0√

πDrt
exp

(
− s2

4Drt

)
∼ [f i

0 − (Cext − 1)]
e−t

√
πt

exp

(
−s2

4t

)
.(4.3)

Equation (4.2a) can be satisfied if and only if n ≥ 1/2. Equation (4.2b) can be
satisfied if and only if n ≤ 1/2. Therefore n = 1/2 and initially the front moves in
a purely Fickian way because the nonlinear memory effects have not yet had time to
develop. Using this result, we obtain

g1(s0) ≡
√
Dr

1 − C∗
erfc(s0/

√
Dr)

exp

(
− s20
Dr

)
=

1 − Cext

erf s0
exp

(−s20) ≡ g2(s0).(4.4)

Figure 4.1 shows plots of g2 − g1 for various values of C∗. The s0-intercept marks
the value of the front speed. Note that as C∗ increases, the front speed increases since
not as much penetrant has to desorb to move the front along.

Figure 4.2 shows the variance in the front speed as Dr and Cext vary. Note that as
Cext decreases, the front speed increases because of a larger driving force. In addition,
as Dr increases, the front speed decreases because it is easier to diffuse penetrant to
the front.

Using (4.4), we may derive the value of fb
0 and hence obtain

Cr
0(x, t) = 1 − 1 − C∗

erfc(s0/
√
Dr)

[
erfc

(
x

2
√
Drt

)
+ erfc

(
2L− x

2
√
Drt

)]
.(4.5)

As L → ∞, the second term drops out and we are left with exactly the expression in
Edwards [26] for the case of a semi-infinite domain. In addition, as t → 0 the second
term modeling “reflections” from x = L is negligible.
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Fig. 4.1. g2 − g1 versus s0 for Dr = 7, Cext = 1/3. Thin line: C∗ = 1/2. Thick line: C∗ = 2/3.
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Fig. 4.2. g1 and g2 versus s0 for C∗ = 1/2. Thick lines: Dr = 0.4, Cext = 1/4. Thin lines:
Dr = 7, Cext = 1/3.

We may also use (4.4) to derive the value of f i
0 and hence obtain

σg
0(x, t) ∼ (Cext − 1)e−t

[
1 − 1

erf s0
erf

(
x

2
√
t

)]
.(4.6)

Substituting (4.6) into (3.2a) and solving using (3.11a), we have the following:

Cg(x, t) = C∗ +
Cext − 1

2 erf s0

{
e−x

[
erfc

(
−√

t +
x

2
√
t

)
− erfc

(
s0 − x

2s0

)]

+ex
[
erfc

(√
t +

x

2
√
t

)
− erfc

(
s0 +

x

2s0

)]}
,

(4.7)
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where the x/s0 terms come from the asymptotic expansion of s−1(x), the inverse
function for the front position:

s−1(x) ∼
(

x

2s0

)2

, x → 0.(4.8)

Unfortunately, we note that if we substitute x = 0 into (4.7), we obtain

lim
x→0

Cg
0 (x, t) = C∗ + Cext − 1 �= Cext = Cg(0, t).(4.9)

The discontinuity near x = 0 must be resolved by a boundary layer, but even the solu-
tion to the full problem near x = 0 will be less than Cext. We call this excessive drying
near the exposed surface desorption overshoot, as the minimum of the concentration
now occurs inside the film. The terminology is motivated by the related phenomenon
of sorption overshoot, where the concentration rises above its equilibrium value during
a sorption experiment [41].

Moreover, it is certainly possible for C∗ + Cext − 1 < 0, which would yield the
physically unrealistic result of a negative concentration. This unphysical aspect is not
an artifact of the asymptotics; rather it is the direct result of the Dirichlet condition
(3.4), as discussed in section 6.

4.2. The corner layer. The discontinuity about x = 0 is caused by the form
of the operator in (3.2a). As long as the evolution equation for C has only a ∂C/∂t
term in it, then σ and C will differ everywhere only by a function of x. Since both C
and σr

0 are constants along the front, that difference must also be a constant at the
front. This causes a discontinuity because

lim
t→0

C(s(t), t) �= lim
t→0

C(0, t).

σr
0 does not vary along the front due to the ε−1 term in (2.7b). This term can be

counteracted if we introduce a corner layer near the origin via the following substitu-
tions:

Cr(x, t) = C+(ξ, τ), σr(x, t) = σ+(ξ, τ), ξ =
x

ε1/2
, τ =

t

ε
.(4.10)

Substituting (4.10) into (2.7), we obtain

∂C+

∂τ
= Dr

∂2C+

∂ξ2
+
∂2σ+

∂ξ2
,(4.11a)

∂σ+

∂τ
+ σ+ =

∂C+

∂τ
,(4.11b)

which is just the full system (2.7) without the γ term. Hence even in the corner layer,
our model matches that of Cairncross and Durning [8], Durning [27], and Durning
and Tabor [28]. Note that τ is the time scale for relaxation in the rubber.

To solve this system, we must proceed numerically. Nevertheless, we note that
due to the exponential decay inherent in (4.11b), curves of constant C are not curves
of constant σ. This fact will remove the discontinuity, which was caused by the fact
that the front was an isocline for both outer solutions.
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5. Numerical computations. We compare our asymptotic results to those
from a finite-element code previously used to solve a similar model [8]. The code
solves (2.1)–(2.4) using finite elements with quadratic basis functions. In order to
resolve the boundary layer, the domain was discretized into sixty fixed but unequally
spaced elements, with more elements placed near x = 0.

Application of the finite element method to the model results in a system of non-
linear coupled ODEs for the nodal values of concentration and stress. The system of
ODEs was integrated in time using a stiff DAE solver, DASSL [42]. DASSL uses an
Adams–Bashforth–Moulton predictor-corrector algorithm with a variable-order back-
ward differentiation formula. The corrector is implicit and the nonlinear system is
solved by Newton’s method with an analytical Jacobian matrix. The time step is
automatically updated to control the estimated error within a specified tolerance.
The error tolerance and number and distribution of elements were adjusted until the
results were insensitive to the size of these parameters.

5.1. Comparison with asymptotics. The parameters chosen for use in both
the analytical model and the numerical simulations were as follows:

C∗ = 1/2, Dr = 4, Cext = 1/4, L = 3, Dg = 4 × 10−4,(5.1a)

βg = 1, βr = 104, α = 80, k = 1.33 × 104.(5.1b)

These parameters essentially correspond to an ε value of 10−4. Also, with these
parameters, s0 ≈ 0.4550.

Figure 5.1 shows a comparison of the asymptotic and numerical predictions of the
front position for small time. The speed of the front decreases with time as predicted
by both methods. The agreement between the asymptotic and numerical results is
excellent.

In Figure 5.2 we show a graph of the concentration for the parameters in (5.1) and
the times listed. The interval in x is restricted near x = 0; the grid spacing decreases
as we reach that endpoint. There is excellent agreement between the numerical and
outer solutions in the region away from the boundary layer, and the discontinuity in
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Fig. 5.1. Asymptotic and numerical calculations of s(t) for the parameters in (5.1).
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Fig. 5.2. Aymptotic solution C0(x, t) (lines) and numerical solution (symbols) versus x. The
numerical and asymptotic solutions are indistinguishable beyond x = 0.2.

∂C/∂x at the glass-rubber transition is accurately predicted by both techniques. Note
that at t = 0.0103 even the numerical solution goes negative, so we have confirmed
that negative concentration values are not an artifact of the asymptotic solution. We
shall examine the root causes of this phenomenon in the next section.

Figure 5.3 shows a graph of the stress versus x for the times listed. There is
excellent agreement between the asymptotic and numerical solutions for the glassy
stress. In addition, the zero-stress approximation (3.8) and the numerical calculation
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Fig. 5.3. Aymptotic solution σg0(x, t) (lines) and numerical solution (symbols) versus x. The
rubbery stress is zero. The numerical and asymptotic solutions are indistinguishable beyond x = 0.15.
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Fig. 5.4. Comparison of asymptotic (from equation (3.6)) and numerical expressions for surface
stress.

in the rubbery region match for larger times. From the graph at t = 2 × 10−4 we
see that due to the rapid drop in C at the surface, the stress in the rubbery region is
initially O(1), as shown in section 4.2. For longer times, the stress decays exponentially
as predicted by (4.11b), until at t = 2.2× 10−3, the numerical calculation is virtually
indistinguishable from (3.8).

Figure 5.4 shows a graph of the surface stress at x = 0. Though the outer and
numerical solutions decay on the same e−t scale, there is a persistent gap because
the outer solution in (3.6) assumes an instantaneous change in C at t = 0, while
the numerical simulations follow (2.4b). Thus, initially the surface concentration and
surface stress evolve on a time scale roughly proportional to k−1. This time scale will
become important later on when we examine the reason for the negative concentration
values.

5.2. Long-time results. Though the validity of the asymptotics ends for mod-
erate times, we can certainly continue the numerical calculations into that region.
Figure 5.5 shows the computed concentration profiles for various times. Note that
between t = 2 and t = 4, the film becomes entirely glassy. (For more discussion of
the time at which the front reaches the back of the film, see the appendix.) Since the
glass has a longer relaxation time, the change in the concentration between t = 2 and
t = 4 is relatively small.

The unphysical negative concentration is not a brief anomaly; it continues for
moderate time, and the size of the dip actually increases. It should be noted that the
desorption overshoot disappears if k is smaller, which corresponds to a slower change
in the surface concentration. For more discussion of this topic, see section 6.

Figure 5.6 shows the computed stress profiles for the same series of times. The
nearly linear stress in the glassy region implies a constant non-Fickian flux. Thus,
the evolution of the concentration in this region is dominated by the Fickian flux.
Note that the surface stress continues its exponential decay to a final limiting value
of zero.
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6. Explaining negative concentrations. The unphysical negative concentra-
tion is not an artifact of the asymptotics, as the numerical solutions in Figure 5.2
show. To explain the phenomenon, we solve (2.6b) for short times, using (3.6) and
(3.2). After some work, we obtain the following expression:

lim
x→0

Cg
0 (x, t) = lim

t→0
σg(0, t) + C∗.(6.1)

Hence the discontinuity in the outer solution exists for all time unless

lim
t→0

σg(0, t) = Cext − C∗.(6.2)
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Moreover, the concentration will go negative whenever

lim
t→0

σg(0, t) < −C∗.(6.3)

How then to avoid satisfying this condition?
Following common practice for diffusion and heat transfer problems, we took

k → ∞ in (2.4b) to obtain the Dirichlet condition (3.4). The resulting discontinuous
jump at t = 0 forces σ(0, 0+) = Cext − 1, as can be seen from (3.6), and this value
can violate (6.3). Why does the standard Dirichlet trick not work for this model?

In a standard diffusion problem, lines of constant t are characteristics. Thus these
equations transmit disturbances with infinite signal speed to the entire domain. As
can be intuited from the leading-order outer equations (3.3) and (3.9a), the same
is true for this model. This explains why the solution does not break down in any
mathematical sense; it just goes negative, which offends our physical sensibilities.

The key difference rather is the delay term inherent in (2.1b). When a jump
occurs very quickly, the stress cannot relax fast enough (even with an O(ε) relaxation
time in the rubber) to equilibrate it. Once a large stress gradient has been introduced
at the exposed surface, there is no mechanism in (3.2a) to stop the concentration
from going negative. This is related to the observation in [41] that other models for
anomalous diffusion will have negative concentration values if a “retardation time” is
not included.

There are several mechanisms one can introduce to moderate the concentration
dip. For instance, consider the case where the ∂σ/∂x term in (2.1a) is multiplied by
a “stress diffusion coefficient” E(C), where E(0) = 0. This term would remain at
leading order in the equation analogous to (3.2a), causing ∂Cg

0/∂t(C = 0) = 0 and
preventing the concentration from going negative. Moreover, preliminary numerical
calculations indicate that if E(C) � 1 in the glassy region, this change can eliminate
negative concentrations while maintaining desorption overshoot.

Another remedy is to slow the change so that it occurs on the fast relaxation time
scale of the rubbery polymer. Thus we replace (3.4) by

C(0, τ) = Cext + (1 − Cext)e
−λτ , λ �= 1,(6.4)

where τ is the time scale defined in (4.10). The exponential form is chosen to match
the analysis in Edwards [24] and the forms in Hui et al. [34] and Long and Richman
[43]; λ �= 1 is taken for simplicity. As λ increases, the driving force increases and the
transition between rubber and glass steepens.

As given by (6.4), the interface is now rubbery for some interval. We may substi-
tute (6.4) into the leading orders of (2.6b) and (2.7b) and solve to obtain the stress
boundary condition. Since τ is an initial-layer variable, we may take the limit of this
condition as τ → ∞ to find the limiting value of the outer boundary condition. This
is found to be

lim
t→0

σg(0, t) = −C∗ − Cext

1 − λ
+
λ(1 − Cext)

1 − λ

(
C∗ − Cext

1 − Cext

)1/λ

.(6.5)

Thus our matching condition, and hence Cg(x, 0), depends on λ. As λ → ∞,
(6.4) approaches a step function and our result from section 3 holds:

lim
t→0

σg(0, t) = −(1 − Cext), λ → ∞.(6.6a)
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If instead λ → 0, we obtain the following:

lim
t→0

σg(0, t) = −(C∗ − Cext), λ → 0,(6.6b)

which from (6.2) is exactly the condition required to eliminate the boundary layer
at the exposed surface. In this case the exterior concentration varies on a time scale
slower than that of the rubber relaxation time, so the entire polymer can equilibrate
to the exterior.

Last, we note that from (6.3) that in order to maintain a positive concentration,
the expression in (6.5) must be greater than −C∗. Hence the generation of negative
concentrations in our model can be remedied by imposing more physically realistic
boundary conditions. If changes in the exterior happen on a faster time scale than
the rubber relaxation time scale, the surface cannot immediately equilibrate. Thus,
the polymer exhibits a sort of “self-regulation” which puts restrictions on the speed
at which the surface concentration can change. This sort of self-regulation has been
seen in similar models of sorption processes [24].

7. Conclusions. During the desorption of saturated polymers near the glass-
rubber transition temperature, a glassy skin will form near the exposed surface. One
mechanism for the formation of such a skin is viscoelastic relaxation in the polymer
network. The mathematical model presented here has captured this behavior in pre-
vious numerical [5], [8] and analytical [26], [29] studies. However, never before has
the model been studied in both ways simultaneously. This merging of techniques in-
volved restricting the analytical study to a more realistic finite domain and adapting
the numerical parameter scheme to approximate a piecewise-constant approach. By
approaching the solution in two ways, we validated both approaches. In particular,
we established that negative concentrations were the result of neither a computational
bug nor an erroneous asymptotic approximation, but were rather the predictable and
robust result of a mathematically simple, but physically unrealistic, boundary condi-
tion.

In the asymptotic work, the parameters are taken as piecewise constant and the
system is treated in a manner similar to a Stefan problem. Since the system is not
amenable to similarity solutions, an integral method based on the one in Boley [38]
is used. The finite domain is extended to a semi-infinite one in both cases, and the
method of images is used to handle the insulated boundary condition at x = L.

The asymptotic and numerical results match well, showing a quick transition to
the glassy region near the exposed surface. The glass-rubber interface initially moves
like t1/2, reflecting the fact that the viscoelastic memory effects have not yet had
time to develop. The numerical solutions demonstrated desorption overshoot, where
a minimum in the concentration occurs in the interior of the domain. This is mirrored
in the asymptotic outer solution, which is less than the imposed surface concentration
as x → 0.

The overshoot can be traced to our replacement of a flux balance condition with
a Dirichlet condition. Such approximations are routinely used in diffusion and heat
conduction problems instead of the more complicated (but physically realistic) activity
or flux conditions. However, in our case taking the limit of large k leads to negative
concentrations. Essentially, we are attempting to force the surface concentration to
vary faster than the polymer can adapt. The intrinsic time scale in the model then
reduces the set of boundary conditions that can lead to physically meaningful results.

In section 6 we proposed two remedies for negative concentrations. A stress
diffusion coefficient can be introduced which shuts down further penetrant diffusion
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when the polymer is dry. Alternatively, if we vary the surface concentration on the
fast τ time scale, we eliminate the negative concentrations. Essentially, the τ -variance
is the fastest that the actual physical system can accommodate. This type of self-
regulation has been demonstrated in sorption models [24].

Though the numerical and asymptotic profiles match well for small t, the ap-
pendix shows that due to the diffusive nature of the operators considered, the fictitious
boundary conditions must be approximated very closely to guarantee accurate results
for moderate t. Nevertheless, the agreement for small time provides a sturdy back-
ground on which to base further work. Not only do the asymptotic solutions verify
the numerics, but they also demonstrate parameter ranges which produce unphysical
results.

Appendix. Some remarks on the intersection point. We conclude by
examining the solution near the time t = tL where s(tL) = L. Due to the symmetry
about the line x = L, s−1(x) should be even about x = L, so the first terms in our
expansion for s(t) should be

s(t) ∼ L− s1
√
r, r = tL − t > 0, s1 > 0.(A.1)

Using (3.10a) and (A.1) in (3.11), we may construct an expansion in r, eventually
reaching the following terms at O(r):

(s21 − 2Dr)
∂2T r

∂x2
(L, tL) = 0,(A.2a)

(
s21
2

− 1

)
∂2σg

0

∂x
(L, tL) = 0.(A.2b)

It can be shown that if the second derivative of T r vanishes at x = L, all even
derivatives of T r must vanish there. But the numerical solutions shown later in
Figure A.1 do not support this transcendental vanishing. Thus, we set s1 =

√
2Dr.
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(Formally, this must be done in a limiting way by setting the stress in the glass equal
to a small quantity representing σr

1, then taking that term to zero.)
To determine tL, we introduce another degree of freedom into our fictitious con-

dition as follows:

f i(x) ∼ f i
0 + f i

1x.(A.3)

Substituting (A.3) into (3.10a) using (4.8), we may combine the resulting equations
to obtain the following equation involving tL:

erf s0 = erf sL − 2sL√
π
e−s2L , sL =

L

2
√
tL
.(A.4)

Note the underlying parabolic nature of the operator, as evidenced by the relationship
between the definition of sL and the diffusion equation similarity variable. It can be
shown that (A.4) has exactly one root sL. In addition, sL > s0, so the front must
speed up as time passes. Figure A.1 shows a graph of the short- and intersection-time
expressions for s(t) as compared with the numerical calculations.

By replacing the one-term expansion for f i(x) with a two-term expression, we
obtain closer agreement near x = L, as desired. In particular, we note that by
combining the asymptotic results, we obtain the change in concavity of the graph and
an acceptable estimate of the inflection time.

Unfortunately, though the two-term expansion provides an improved estimate of
tL, it is still not very accurate. Due to the diffusive nature of the underlying problem,
the estimate of the initial condition must be highly accurate to obtain reasonable
predictions for moderate t. In addition, the constructed solution does not work well
for small times (r = O(1)). Thus, as a next step one should construct a three-term
expansion for f i(x) that satisfies the leading-order conditions at both x = 0 and
x = L. This sort of iterative process, where one continually improves the form of
f i, should converge to the correct solution on finite domains. Infinite domains are
fundamentally different since t → ∞. This case can be treated asymptotically using
appropriately chosen expansion functions [26], [29], [39], [40].
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