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Abstract-When one incorporates transport effects into a surface-volume reaction, an integro- 
differential equation for the bound state concentration occurs. Such a form is inconvenient for data 
analysis. An effective rate constant approximation for the solution is correct to 0(Da2) as the 
Damkohler number Da ---) 0. A numerical simulation of the integrodifferential equation is performed 
which shows that the effective rate constant approximation is useful even outside this regime. @ 2002 
Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

To understand better the chemical reactions that occur inside living organisms, scientists need 
accurate quantitative measurements of the governing rate constants for the reaction. Surface 
plasmon resonance (SPR) 11 a ows the measurement of rate constants in surface-volume reactions 
such as those that occur on the surface of a cell [l], and the BIAcoreT” is a popular device for 
performing SPR. The BIAcore TM device consists of a channel through which one of the reactants 
(the arllalyte) is convected in standard two-dimensional Poiseuille flow from cz = 0, the inlet. 
position. The other reactant, called the receptor, is coupled to a sensor surface on the ceiling 
of the channel. (See Figure 1.) Reactant binding causes refractive changes in a polarized light 
beam which are then averaged over the length of the ceiling to provide real-time measurement of 
the bound-state concentration [2,3]. This data is then transferred to a regression program which 
predicts the rate constants using a mathematical model. 
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Figure 1. Schematic of BIAcoreTM device. 

Unfortunately, until recently, these models have treated only the case where the analyte was 

distributed uniformly along the channel. Thus, transport effects were neglected since the trans- 

port was essentially taken to be instantaneous. In this paper, we discuss the complications that 

arise when transport is taken into account and demonstrate numerically that an approximation 

formally correct for small transport effects is actually good for a wide parameter range. 

2. GOVERNING EQUATIONS 

As mentioned above, the simplest case to consider is where transport effects are absent. In 

this case, the reaction is governed by the simple (dimensionless) ODE 

g = (1 -B) - KB, B(0) = 0, (1) 

where B is the concentration of the bound state and K is the afinity constant, which is a ratio 

of the rate constants [4]. In this case, B is independent of the distance along the channel 2 and 

the averaging of the data does not affect the calculation of the rate constants. 

However, it can be shown [4] that in the presence of transport effects with large Peclet number 

(as is achieved in the BIAcoreTM ), the actual governing equation for B is as follows: 

g = [I - DaC(z, t)](l - B) - KB, B(z, 0) = 0; z E [O,ll, (24 

1 
C(x’t) = 31/3r(2/3) Pb) 

i&,RTL1/3h’/3 
Da= > reaction rate 

vi/s@/3 = diffusion rate in unstirred layer. 

Here C represents the deviation of the analyte concentration from the uniform value 1 implicit 

in equation (1). Note from (2b) that as expected, the analyte depleted at 5 is an integral of the 

differential changes upstream (0 < < < z). 

Da is the DamlcGhler number, which measures the strength of transport effects. The “unstirred 
layer” refers to the boundary layer near the surface of width Pe- ‘I3 where diffusion and convection 

balance. In the definition of Da, i, is the association (“on”) constant, RT is the total number of 

sites available for binding, L and h are the dimensions of the channel, V is related to the velocity 

of the analyte, and fi is the diffusion coefficient. 
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Due to the integral in (2b), system (2) is difficult to solve. Also, it provides solutions for B, 

not its average, so the solutions thus obtained have to be manipulated again to obtain forms 

compatible with the data stream. However, if Da is small, equation (2a) suggests a perturbation 

expansion in that parameter. To leading order, equation (1) holds for B, and thus, the bound 

state is nearly uniform in 5. Because of this leading-order uniformity in B, the average deviation 

of C from its equilibrium value may be written asymptotically as F(X)%, so the time dependence 

factors out. Then the leading order of (2b) may be explicitly solved, and the result substituted 

into (2a). Upon averaging, we obtain [5] 

g= [(I-B)-KB](l-p)+O(Da2), 
Da(l-B)F 

‘= l+Da(l-B)F’ 

Similar expressions may be obtained for reactions in arbitrary geometries [6]. 

In (3), B is the average of the bound state concentration. Thus, (3) is in a form compatible 

with the data stream. In a dissociation experiment, p is the probability that an analyte molecule 

dissociating from the surface will rebind further downstream [5], and here the interpretation is 

similar. Essentially, p is the probability that an analyte molecule will be unavailable for binding 

due to inefficient transport. Since F is independent of t, it is a function only of the geometry of 

the system under consideration [6]. 

Therefore, not only is (3) a more useful form for analysis, it also yields interesting physical 

interpretations. However, at this stage it has been determined to be useful only in the limit that 

Da + 0. Can we extend this result? 

3. NUMERICAL SIMULATIONS 

Equation (3) has been used in simulations of the binding process in the caSe where Da is 

moderate, and has yielded reasonably accurate results [7,8]. We now present the results of a 

systematic series of simulations where solutions of (2) and (3) are compared to determine the 

efficacy of (3) when Da is moderate. The algorithm used for (3) was a standard explicit Euler 

scheme. 

The algorithm for (2) is more subtle, reflecting the increased complexity of the problem. First, 

we note that due to the form of the convolution integral, the value of C(X, t) (and hence, B(z, t)) 

depends only on those values of B(<, t) for < < Z. Therefore, by solving first at z = 0 and 

working downstream for each time step, we may use updated values of g(<, t) at, each grid point. 

However, the scheme is not fully implicit; for B(z, t) itself, the value from the previous time step 

was used. This choice, though it makes the method only semi-implicit, rather than fully implicit, 

forces (4) to reduce to the discretization of (3) w h en Da = 0, thus ensuring consistency in the 

results. 

Indexing space by i and time by n, a schematic version of the algorithm is shown below: 

a& n+l 
) = (1 - DaC,,,+l 

at 
I(1 - &,n) - KBi,,, Bz,o = 0, 

c 1 
=’ 

z’n+l = 31/31’(2/3) s o (4b) 

One further complication is the JP213 singularity in the convolution integral. This was handled 

by subtracting out the singularity and then integrating directly. Schematically, the algorithm 

replacing (4b) was as follows: 

c 
1 

r’n+l = 31/3r(2/3) 
. (5) 
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Figure 2. Error of discretized solution. The error plotted is the largest difference 
between the solution with N grid points and the solution with 80 grid points for a 
complete run with Da = 0.45, K = 1. 

Note that the integral no longer has a singularity at < = 0. The numerical integration was 

performed using the trapezoidal rule. 

In the BIAcoreTM, the scanning range over which the solution is averaged is not the entire 

interval. Therefore, the solution once obtained, was averaged using the midpoint rule on a 

prescribed subset of internal mesh points. Not only does this averaging simulate the actual 

instrument, but also it makes the numerical simulation more accurate, since the x1j3 singularity 

near z = 0 is not considered in the averaging. The simulation ran until one of the derivatives in 

either (2) or (3) was less than a tolerance based on At. 
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Figure 3. Error between effective rate constant and full numerical solution vs. t for 
a complete run with Da = 0.45, K = 1. 
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Figure 4. Error between effective rate constant and full numerical solution vs. Da 
for runs with K = 1, N = 100. 

To test the accuracy of our numerical algorithm (4) and (5), we performed several experiments 

with differing values of Ax, using the most refined solution as the baseline. The results are 

shown in Figure 2. The discretization error shown (the largest for an entire simulation) compares 

favorably with the estimate of (AX) 5/3 obtained by using simpler test cases. (The reduction 

of accuracy from the normal (Acc)~ in the trapezoidal rule is a result of the singularity in the 

convolution integral.) Therefore, we always set our time step equal to (AE)~ to ensure that 

spatial discretization error dominated. 

To compare the accuracy of the effective rate constant solution, we graphed the error between 

the numerical solutions of (2) and (3) throughout an experiment. The results are shown in 

Figure 3. As one can see, the error is quite small even though Da is moderate. 

Last, we tested the main hypothesis: whether the effective rate constant equation can be used 

successfully outside the parameter range where it was derived. An experiment was designed with 

Ax = 0.01, which corresponds to a discretization error of 4 x 10e4. The results are shown in 

Figure 4. Note that for small Da, the error (again the largest for an entire simulation) grows 

like Da2, as predicted. Then as Da increases, the error remains small, eventually approaching 

a maximum value as Da -+ co. This is because as Da -+ 03, p --) 1 and we eventually reach a 

case where the transport is so slow that the downstream sites are starved for analyte. However, 

this asymptote is still small (corresponding to roughly a 2% error), and thus, we see that the 

effective rate constant solution provides a good estimate to the solution even when Da is not 

small, especially when one considers that there will be noise in any laboratory experiment. 

4. CONCLUSIONS AND FURTHER RESEARCH 

Given the current state of the art in SPR technology, simple models for surface-volume reactions 

are needed to obtain accurate constants for the reactions. Though the full model for such a 

reaction in the BIAcoreT” consists of an integrodifferential equation, the effective rate constant 

solution can be shown to be a good approximation to the true solution when Da + 0. With 

the results presented here, we have now shown numerically that when transport effects play 

a significant role, the effective rate constant approximation still provides useful rate constant 

estimates. 
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Further research will use more sophisticated algorithms to compute the solution, as well as 

take into account other physical effects in the BIAcoreTM, such as the fact that the reaction does 

not always take place on a surface, but rather in a thin dextran layer adhered to the channel 

ceiling. 
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