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Abstract. Diffusion of a penetrant in a polymer entanglement network cannot be described by
Fick’s Law alone; rather, one must incorporate other nonlocal effects. In contrast to previous
viscoelastic models which have modeled these effects through hereditary integrals in time, a new
model is presented exploiting the disparate lengths of the polymer in the glassy (dry) and rubbery
(saturated) states. This model leads to a partial integrodifferential equation which is nonlocal
in space. The system is recast as a moving boundary-value problem between sets of coupled
partial differential equations. Using singular perturbation techniques, sorption in a semi-infinite
polymer is studied on several time scales with varying exposed interface conditions. Though
some of the results match with those from viscoelastic models, new physically relevant behaviors
also appear. These include the formation of stopping fronts and overshoot in the pseudostress.
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1. Introduction

The nearly “designer” properties of polymers have made them a preferred material
in many industries. For instance, polymers are routinely used in conjunction
with various penetrants or diluents in gaseous or liquid form. One unusual, yet
industrially exploitable, feature of such polymer-penetrant systems is a change
of state in the polymer from a rubbery state when it is nearly saturated to a
glassy state when it is nearly dry. The change in material properties associated
with the change of state can then be utilized in various manufacturing processes.

These polymer-penetrant systems often exhibit anomalous behavior, such as
“Case II diffusion,” where a sharp change-of-state interface moves with constant
speed [1]. Such phemomena cannot be explained by simple Fickian diffusion,
which postulates that the chemical potential µ̃ of the system is a function of the
penetrant concentration C̃ only. Though all the physical mechanisms responsible
for these phenomena are not known, most scientists agree that one important factor
is a nonlocal dependence of the dynamics upon the configuration of the polymer
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entanglement network. In many polymer-penetrant systems, these nonlocal effects
are as important to the transport process as the well-understood Fickian dynamics
[2].

Though nonlocal effects are considered responsible for much of the unusual
behavior seen in polymer-penetrant systems, the overwhelming majority of studies
have considered memory effects: that is, those that are nonlocal in time only (for
instance, see [3]–[5]). These effects have been modeled by assuming that µ̃ depends
not only on C̃, but also on an osmotically-induced viscoelastic “swelling pressure”
[6], which is related to the trace of the stress tensor in the polymer entanglement
network [6]–[9].

However, these nonlocal effects in time can be thought of as resulting partly
from the disparate length scales in polymer-penetrant systems. Consider a pene-
trant molecule diffusing through an entangled polymer network. Polymers form
very long chains which can be orders of magnitude larger than the penetrant
molecules. Thus, the entanglement network can be heuristically visualized as a
mass of tangled spaghetti-like strands. In the glassy state, the network can be
highly ordered or even crystalline [10]. After the rubber transition, the network
becomes more and more disordered.

Thus, one can see that the entanglement network forms a series of intercon-
nected “pockets” through which the penetrant must diffuse [11]. These pockets
can open or close through the formation of “holes” by even a limited oscillation
of one or two polymer strands [10], [12]. This “pocket” model holds even when
the polymer molecules are more rigid and rodlike [13], and the idea of the entan-
glement network restricting free diffusion is also the centerpiece of the reptation
model of polymer-polymer diffusion [11], [13].

Since links between polymer chains form on these pockets, the dynamics will
depend not only on local properties, but also on properties within a neighborhood
of characteristic length β−1, which we shall call the dependence length. In fact, it
is well known that the stress in the system is dependent on the configuration of the
polymer strands [13], [14]. Therefore, it is important to examine the possibility
that some of the nonlocal effects are spatial in nature. This type of nonlocal spatial
modeling also appears in some stochastic models of this type of behavior [15].

There are several ways that one can construct a characteristic dependence
length. One way is to relate β to the relaxation time of the stress in the vis-
coelastic model using the molecular diffusion coefficient D̃. Due to this simplistic
relationship, we also expect the new model to capture the polymer-penetrant dy-
namics well. Another is to let β−1 be the length of the polymer chain. However,
since the molecule is quite often folded and twisted in some disordered configura-
tion, it is better to interpret β−1 as the radius of the smallest sphere that contains
the polymer chain.

Clearly β depends on the strength of the entanglement of the polymer net-
work, which is directly related to the amount of penetrant C̃ [11]. At first blush,
it might seem appropriate to use the standard diffusion equation to describe the
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system while allowing D̃ to vary in some nonlocal spatial way upon C̃. This is
because increasing C̃ allows the polymer network to disentangle, and increased
mobility of the polymer chains increases D̃ as more “holes” form [10]. Howev-
er, these sort of models were originally used (with nonlocal effects in time) to
explain Case II diffusion in polymers [14], [16]–[18], and they ultimately proved
unsuccessful. Therefore, we adapt the previous model by assuming that µ̃ de-
pends on a “pseudostress” σ̃ which has nonlocal spatial dependence. (The choice
of terminology will be apparent later.) Though proposing a model of this type to
study polymer-penetrant systems is rather unusual, certainly the key ideas have
appeared in other disciplines. For instance, spatial nonlocalities have been used
successfully for many years to model biological systems [19]–[21].

The formation of the model leads to a partial integrodifferential equation, which
can be restated as a system of two coupled partial differential equations. By
making physically appropriate assumptions, the system is reduced to a moving
boundary-value problem, where different operators hold on either side of the glass-
rubber interface. We solve the problem of sorption into a semi-infinite medium on
two different time scales and for two different types of conditions.

If the permeability of the exposed surface is high, on the shorter time scale the
front moves in a purely Fickian way, even though the solution in the rubbery region
does not obey a Fickian operator. For lower permeabilities, the front initially
moves in a linear fashion, then as t̃ → ∞, asymptoting to a

√
t̃ behavior with a

backward shift. Again, this is similar to Fickian systems with a radiation boundary
condition [22].

On the longer time scale, the front will actually stop as t̃→∞. This represents
an equilibrium between the diffusive forces trying to move the front along and the
pseudostress, which acts to retard front motion [23]. This stopping front behavior
has not been seen in models for these systems which involve only memory effects.

2. Governing equations

In order to incorporate the nonlocal spatial effects of polymer entanglement net-
works into our model, we postulate that the chemical potential µ̃ is a function of
C̃ and σ̃, where σ̃ is described by the following (in one dimension):

σ̃ = −1
2

∫ ∞
−∞

f

(
C̃(x̃′, t̃),

∂C̃

∂x̃
(x̃′, t̃)

)
exp

[
−
∣∣∣∣∣
∫ x̃

x̃′
β(C̃(z, t̃)) dz

∣∣∣∣∣
]
dx̃′. (2.1)

As defined in (2.1), σ̃ solves the evolution equation

∂

∂x̃

[
1

β(C̃)
∂σ̃

∂x̃

]
− β(C̃)σ̃ = f

(
C̃(x̃, t̃),

∂C̃

∂x̃
(x̃, t̃)

)
. (2.2)

In particular, we call σ̃ the pseudostress since, though a nonstate variable, its be-
havior matches closely that of the stress in the polymer network in the viscoelastic
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models [24]. We also note that (2.2) is quite similar to the evolution equation
in [5] with ∂/∂t̃ replaced by ∂2/∂x̃2—in other words, we replace one part of the
diffusion operator with another. This relationship, along with the fact that we
may construct a β by combining the relaxation time with the diffusion coefficient,
provides strong evidence that this model should produce many results that agree
with the models that are nonlocal in time.

The next step is to determine the proper form for f . Following the discussion
in [5], [25], and [26] for memory effects, we use a form which is linear in both C̃
and ∂C̃/∂x̃, namely

f

(
C̃(x̃, t̃),

∂C̃

∂x̃
(x̃, t̃)

)
= −ηC̃(x̃, t̃) + ν

∂C̃

∂x̃
(x̃, t̃). (2.3)

where η and ν are positive constants. Some discussion of (2.3) is appropriate.
Substituting (2.3) into (2.2), we obtain the following evolution equation for σ̃:

∂

∂x̃

[
1

β(C̃)
∂σ̃

∂x̃

]
− β(C̃)σ̃ = −ηC̃(x̃, t̃) + ν

∂C̃

∂x̃
(x̃, t̃). (2.4)

As we approach the far field (and hence can neglect the x̃-derivative terms), we
see that a positive value for C̃ implies a positive value for σ̃. Since we wish to
think of σ̃ as analogous to a stress, this makes sense. Similarly, we note that if we
have a positive concentration flux at a point x̃, then ∂C̃/∂x̃ is negative there. We
would expect a positive flux to increase the stress, and hence the signs match here
as well.

The evolution equation (2.4) for σ̃ coupled to the standard conservation of mass
equation ∂C̃/∂t̃ = −∂J̃/∂x̃, provide the system which we must solve. Since

J̃ = −K(C̃)
∂µ̃(C̃, σ̃)

∂x̃
= −

[
D̃(C̃)

∂C̃

∂x̃
+E(C̃)

∂σ̃

∂x̃

]
, (2.5)

where K(C̃) is some nonlinear function and E(C̃) is a function of proportionality,
the conservation of mass equation becomes

∂C̃

∂t̃
=

∂

∂x̃

[
D̃(C̃)

∂C̃

∂x̃
+E

∂σ̃

∂x̃

]
, (2.6)

where in (2.6) we have assumed that E(C̃) is constant, as in [5], [7].
The polymer entanglement network exists in one of two states. In the glassy

state when the polymer is nearly dry, the polymer chains are well-ordered and
severely entangled. In contrast, in the rubbery state when the polymer is nearly
saturated, the network disentangles and the characteristic length of a chain grows
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[10], [11]. Thus β(C̃) changes greatly as the polymer goes from the glassy state to
the rubbery state. However, the differences in β(C̃) within phases are qualitatively
negligible when compared with the differences between phases. Hence, we model
β(C̃) by its average in each phase, yielding the following functional form:

β(C̃) =
{
βg, 0 ≤ C̃ ≤ C̃∗ (glass)

βr, C̃∗ < C̃ ≤ C̃c (rubber),
(2.7)

where C̃∗ is the concentration at which the rubber-glass transition occurs and C̃c
is a saturation level for the polymer.

We use a canonical example for systems of this type. We wish to model the
sorption of an initially dry semi-infinite polymer, so we have that

C̃(x̃, 0) = 0. (2.8)

Due to the form of the evolution equation (2.4), we must impose a boundary
condition on the pseudostress at the exposed edge x̃ = 0. At the present time, we
leave it arbitrary:

σ̃(0, t̃) = σ̃b(t̃). (2.9)

At the exposed edge, we also apply a radiation condition, which indicates that
the flux through the inside of the film is proportional to the difference between
the concentration at the edge of the film and the exterior concentration C̃ext:

−
[
D̃(C̃)

∂C̃

∂x̃
+E

∂σ̃

∂x̃

]
(0, t̃) = k̃[C̃ext − C̃(0, t̃)]. (2.10)

Note that (2.10) implies that the flux desorbed depends directly on the concen-
tration at the boundary. Therefore, in sorption problems with low permeability,
we expect the concentration at the boundary to grow slowly, approaching C̃ext as
t̃→∞.

Our problem will involve matching the solutions of the two equations where
β = βg and β = βr. Thus, it is necessary to impose conditions at the moving
boundary s̃(t̃) between the two regions. In the region where the polymer is rubbery,
we will use a superscript “r” on the dependent variables; in the region where the
polymer is glasssy, we will use a superscript “g”. We begin by assuming continuity
of concentration at the specified transition value C̃∗:

C̃r (s̃(t̃), t̃) = C̃∗ = C̃g (s̃(t̃), t̃) . (2.11)

In addition, we assume that there is a fundamental change that takes place in
the polymer as we go from glass to rubber. Experimentally, this has been shown to
be related to a stretching of the polymer. The penetrant used up by the polymer in
this stretching is directly analogous to the energy used up in melting in a standard
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two-phase heat conduction problem. Hence, we follow the same sort of derivation
[5], [22] to obtain the standard condition that the difference between the flux in
and the flux out is proportional to the speed of the front, i.e.,

[J̃ ]s̃ = −ãds̃
dt̃
,

where ã is a constant and where we have defined the operator [f ]s̃ ≡ fg(s̃+(t̃), t̃)−
f r(s̃−(t̃), t̃). (Note that this definition includes continuity of flux as a special case.)
Substituting our expression for J̃ from (2.10) into the above, we have the following:[

D̃
∂C̃

∂x̃
+E

∂σ̃

∂x̃

]
s̃

= ã
ds̃

dt̃
. (2.12)

Due to the nature of the operator in the time-dependent models, one needed
to impose only continuity of pseudostress there, with the value undetermined [27].
However, since the evolution equation (2.4) for pseudostress is second order, we
either need two conditions (one in σ̃ and one in ∂σ̃/∂x̃) or a specified value for
σ̃. Since the “Stefan condition” (2.12) is already a condition on ∂σ̃/∂x̃, we must
impose continuity of pseudostress at a predetermined value σ̃∗:

σ̃r (s̃(t̃), t̃) = σ̃∗ = σ̃g (s̃(t̃), t̃) . (2.13)

We assume that σ̃∗ > 0 in a sorption experiment.
In order to restate the problem in dimensionless variables, we let

x = x̃βc, t = νEβ2
c t̃, s(t) = βcs̃(t̃), C(x, t) =

C̃(x̃, t̃)
C̃c

, σ(x, t) =
σ̃(x̃, t̃)
νC̃c

,

σ∗ =
σ̃∗

νC̃c
, σb(t) =

σ̃b(t̃)
νC̃c

, C∗ =
C̃∗

C̃c
, a =

ã

C̃c
, k =

k̃

νEβc
,

D(C) =
D̃(C̃)
νE

, Cext =
C̃ext

C̃c
,

where C̃c and βc are arbitrary for now. Then equations (2.6), (2.4), (2.8)–(2.11),
(2.13), and (2.12) reduce to

∂C

∂t
=

∂

∂x

[
D(C)

∂C

∂x
+
∂σ

∂x

]
, (2.14)

∂

∂x

[
βc
β(C)

∂σ

∂x

]
− β(C)

βc
σ = − η

νβc
C +

∂C

∂x
, (2.15)
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C(x, 0) = 0, (2.16a)

σ(0, t) = σb(t), (2.16b)

D(C)
∂C

∂x
(0, t) +

∂σ

∂x
(0, t) = k[C(0, t)− Cext], (2.17)

Cr (s(t), t) = C∗ = Cg (s(t), t) , (2.18)

σr (s(t), t) = σ∗ = σg (s(t), t) , (2.19)[
D(C)

∂C

∂x
+
∂σ

∂x

]
s

= aṡ, (2.20)

where the dot indicates differentiation with respect to t. These are the equations
which we will be using in our nonlinear analysis. A remark about (2.20) is appro-
priate. In other nonlocal models [5], it is possible to use the evolution equation
for σ to rewrite the analogous front condition in terms of C only. Unfortunately,
due to the second-order operator in (2.15), (2.20) cannot be simplified further.

In order to make the problem analytically tractable, we make one more sim-
plifying assumption. As stated before, the diffusion coefficient often, though not
always, increases dramatically as the polymer goes from the glassy to rubbery
state [28]. However, changes within phases are less important. Hence, we perform
the same averaging as we did with the relaxation time to obtain the following form
for D(C):

D(C) =
{
Dg, 0 ≤ C ≤ C∗,
Dr, C > C∗.

(2.21)

This piecewise-constant form for D(C) has been used by Crank [14] to study these
anomalous systems. More discussion of various physically appropriate forms for
D(C) and E(C) can be found in Cohen and White [25].

Due to the forms of (2.7) and (2.21), we may treat β(C) and D(C) as constants.
Thus we may combine equations (2.14) and (2.15) to obtain

∂3C

∂x2∂t
= D(C)

∂4C

∂x4 −
ηβ(C)
νβ2

c

∂2C

∂x2 +
β(C)
βc

∂3C

∂x3 +
β2(C)
β2
c

∂C

∂t
− β2(C)D(C)

β2
c

∂2C

∂x2 .

(2.22)
It can be shown that this operator also holds for σ.

In order to use a perturbation method, we must have a small parameter. Since
the length of a swelled polymer chain (or the radius of a circumscribed sphere) is
much larger than for a glassy polymer chain, we take βr/βg = ε. (Note this is true
because we are taking the ratio of the reciprocal of the length scales.)
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3. Fickian fronts

Next we must specify the choice of the length scale β−1
c . To begin, we use the

geometric mean of our two characteristic length scales, β−1
g and β−1

r ; hence βc =√
βgβr. Making this substitution into (2.15) and (2.22) yields

∂2σ

∂x2 −
β2(C)
βrβg

σ = −ηβ(C)
νβrβg

C +
β(C)√
βgβr

∂C

∂x
, (3.1)

∂3C

∂x2∂t
= D(C)

∂4C

∂x4 −
ηβ(C)
νβgβr

∂2C

∂x2 +
β(C)√
βgβr

∂3C

∂x3 +
β2(C)
βgβr

∂C

∂t
− β

2(C)D(C)
βgβr

∂2C

∂x2 .

(3.2)
Diffusion in the rubbery region is much more pronounced than in the glassy

region, so we take Dr = D0ε
−1. Making this substitution into (2.14), (3.1), and

(3.2), we have the following equations in the rubbery region:

∂Cr

∂t
= D0ε

−1 ∂
2Cr

∂x2 +
∂2σr

∂x2 , 0 < x < s(t), (3.3a)

∂2σr

∂x2 − εσ
r = −εγCr + ε1/2

∂Cr

∂x
, γ =

η

νβr
, (3.3b)

∂3Cr

∂x2∂t
= D0ε

−1 ∂
4Cr

∂x4 − εγ
∂2Cr

∂x2 + ε1/2
∂3Cr

∂x3 + ε
∂Cr

∂t
−D0

∂2Cr

∂x2 , (3.4)

while in the glassy region we obtain

∂Cg

∂t
= Dg

∂2Cg

∂x2 +
∂2σg

∂x2 , x > s(t), (3.5a)

∂2σg

∂x2 − ε
−1σg = −γCg + ε−1/2 ∂C

g

∂x
, (3.5b)

∂3Cg

∂x2∂t
= Dg

∂4Cg

∂x4 − γ
∂2Cg

∂x2 + ε−1/2 ∂
3Cg

∂x3 + ε−1 ∂C
g

∂t
−Dgε

−1 ∂
2Cg

∂x2 . (3.6)

We note that with such a large diffusion coefficient in the rubbery region, we
would expect the front to move in an O(1) fashion only if a was correspondingly
large. Therefore, we let a = a0ε

−1 in (2.20), yielding(
Dg

∂Cg

∂x
+
∂σg

∂x

)
(s(t), t) −

(
D0ε

−1 ∂C
r

∂x
+
∂σr

∂x

)
(s(t), t) = a0ε

−1ṡ. (3.7)

As a simplest possible test case, we consider the case where k > O(ε−1), in
which case the leading order of (2.17) becomes Cr(0, t) = Cext, where we have used
the fact that D(C) never becomes larger than O(ε−1). We have also assumed that
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Cext ≥ C∗ in order to obtain a change of state. In this case, C̃ext is the natural
choice for the characteristic penetrant concentration (since we do not expect the
polymer to saturate at a higher level). Hence Cext = 1 and we have

Cr(0, t) = 1. (3.8)

Thus the polymer is always in the rubbery region when x = 0, so

s(0) = 0. (3.9)

3.1. The rubbery region

First we consider the rubbery region. We assume a perturbation series in ε for our
solutions:

Cr(x, t; ε) = Cr
0(x, t) + o(1), σr(x, t; ε) = σr

0(x, t) + o(1). (3.10)

Substituting (3.10) into (3.3a), (2.18), and (3.8), we obtain, to leading order,

D0
∂2Cr

0
∂x2 = 0, Cr

0 (s(t), t) = C∗, (3.11)

Cr
0(0, t) = 1. (3.12)

Solving (3.11) subject to (3.12) yields the following:

Cr
0(x, t) = 1− (1− C∗)x

s
. (3.13)

Substituting (3.10) into (3.3b), (2.16b), and (2.19), we have

∂2σr
0

∂x2 = 0, σr
0(0, t) = σb(t), σr

0 (s(t), t) = σ∗, (3.14)

the solution of which is

σr
0(x, t) = σb(t)− [σb(t)− C∗]x

s
. (3.15)
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3.2. Glassy pseudostress and front position

In the glassy region, we assume a perturbation series in ε for our solutions:

Cg(x, t; ε) = C
g
0 (x, t) + o(1), σg(x, t; ε) = σ

g
0(x, t) + o(1). (3.16)

Substituting these series into (3.5b), we obtain σg
0 = 0 to leading order, which

clearly does not satisfy the leading order of (2.19):

σg
0 (s(t), t) = σ∗. (3.17)

Thus, an interior layer must be introduced in the pseudostress near the front.
Substituting (3.16) and our expression for σg

0 into (3.5a) and (2.18), we obtain,
to leading order,

∂Cg
0

∂t
= Dg

∂2Cg
0

∂x2 , (3.18)

Cg
0 (s(t), t) = C∗. (3.19)

From the diffusive form of (3.18), it is reasonable to assume that there would not
need to be an interior layer in the concentration, since the front condition (3.19)
can be solved without one. Indeed this is the case, as can be shown.

Therefore, the only interior layer needed is in the pseudostress. Letting

ζ =
x− s(t)
ε1/2

, σg(x, t) = σ+(ζ, t) + o(1), (3.20)

in (3.5b), (3.17), and the matching condition that σg
0 ≡ 0, we have

∂2σ+

∂ζ2
− σ+ = 0, σ+(0, t) = σ∗, σ+(∞, t) = 0, (3.21)

the solution of which is
σ+(ζ, t) = σ∗e

−ζ. (3.22)

Substituting our scalings in (3.20) into (3.7), we obtain, to leading order,

D0
(1− C∗)

s
= a0ṡ, (3.23)

where we have used (3.13). Continuing to simplify, we have

s(t) = 2b
√
Dgt, b =

√
D0(1− C∗)

2a0Dg
, (3.24)

where we have used (3.9) and assumed that a0 > 0.
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Figure 3.1.
In increasing order of thickness: C(x, t) vs. x for t = 0.1, 0.8, 6.4, 5.12 and the parameters in
(3.27a).

3.3. The glassy region: concentration

Substituting our series in (3.16) into (2.16a) yields the following:

C
g
0 (x, 0) = 0. (3.25)

Solving (3.18) subject to (3.19), (3.24), and (3.25), we have

C
g
0(x, t) = C∗

erfc(x/2
√
Dgt)

erfc b
. (3.26)

Figure 3.1 shows a graph of the concentration vs. x for various times, as listed
in the figure caption. The position of the front at each time is marked by a vertical
line from C = 0 to C = C∗. The parameters chosen are listed below:

a0 = 2, C∗ =
1
2
, D0 = 3, Dg = 1. (3.27a)

Note that as expected, we see standard Fickian-like behavior in the glassy region.
In the rubbery region, the nonlocal behavior in space has the effect of enhancing
the diffusion, and thus we obtain steady-state Fickian profiles.
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Figure 3.2.
In increasing order of thickness: σ(x, t) vs. x for t = 0.1, 0.8, 6.4, 5.12 and the parameters in
(3.27).

Figure 3.2 shows a graph of the pseudostress vs. x for the same times as in
Fig. 3.1. The position of the front at each time is marked by a vertical line from
σ = 0 to σ = σ∗. The figure uses the parameters in (3.27a) as well as the following
additional ones:

ε = 0.01, σb(t) = 0, σ∗ =
2
3
. (3.27b)

Note that from the unstressed state, the pseudostress increases greatly in a narrow
band about x = s(t). This is due to the fact that there is a nonzero pseudostress
in the rubbery region caused by the finite spatial memory there. In contrast, there
is no pseudostress in the glassy region because of the inifinitesimal spatial memory
there. These two regions must be matched together in a smooth diffusive way,
which forces the creation of an interior layer.

4. Lower permeability

Now we examine the case where the permeability is not quite so large. We assume
that k = k0ε

−1, and again normalize so that Cext = 1. Substituting this form into
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(2.17), we obtain

D(C)
∂C

∂x
(0, t) +

∂σ

∂x
(0, t) = k0ε

−1[C(0, t)− 1]. (4.1)

If the polymer starts out in the glassy region, there is no balance because D(C) =
O(1) and C(0, t) = 1 corresponds to the rubbery region. Therefore, the polymer
at the exposed surface must always be rubbery and (4.1) becomes

D0
∂Cr

0
∂x

(0, t) = k0[Cr
0(0, t)− 1], (4.2)

where we have used the series in (3.10). Equation (4.2) now replaces (3.12) in our
work from that section. The solution to (3.11) and (4.2) is given by

Cr
0(x, t) = C∗ +

k0s(1− C∗)
k0s+D0

(
1− x

s

)
. (4.3)

Note that in the limit that k0 →∞, (4.3) reduces to (3.13).
The new boundary condition does not affect our calculation of the pseudostress

in either the glassy or rubbery regions. However, with (4.3) replacing (3.13) and
letting

S(t) = s(t) +
D0
k0
, (4.4)

(3.23) becomes

D0
(1− C∗)

S
= a0Ṡ,

the solution of which is

S(t) =

√
2
D0(1− C∗)t

a0
+
D2

0
k2
0
, (4.5a)

s(t) = −D0
k0

+

√
2
D0(1− C∗)t

a0
+
D2

0
k2
0
. (4.5b)

Note that in the limit that k0 →∞, (4.5b) reduces to (3.24).
Since s(t) is no longer proportional just to t1/2, we cannot use similarity vari-

ables to obtain a solution. Therefore, we employ an integral method developed
by Boley [29] for simpler diffusion problems and used extensively on systems with
memory effects by Edwards [7], [24], [30]. We assume that the equations for the
glassy region hold for the entire semi-infinite region for some function T (x, t).
Therefore, we have that

T (x, t) = Cg
0(x, t), x > s(t). (4.6)
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This fictitious function T must satisfy the operator in (3.18) subject to the bound-
ary data (3.19) and (3.25) and a fictitious boundary condition (FBC)

T (0, t) = fb(t). (4.7)

Thus, we have
∂T

∂t
= Dg

∂2T

∂x2 , T (x, 0) = 0, (4.8)

T (s(t), t) = C∗. (4.9)

Using Laplace transforms, the solution of (4.8) subject to (4.7) can easily be
shown to be

T (x, t) =
x

2
√
πDg

∫ t

0

fb(z)
(t− z)3/2 exp

[
− x2

4Dg(t− z)

]
dz. (4.10)

Substituting (4.10) into (4.9), we obtain

s

2
√
πDg

∫ t

0

fb(z)
(t− z)3/2 exp

[
− s2

4Dg(t− z)

]
dz = C∗. (4.11)

Note that by using Boley’s method we have reduced the problem to an integral
equation in the unknowns s and fb.

4.1. Small-time asymptotics

We begin by looking at the solution for small time. Expanding (4.5b) for small
time, we have

s(t) ∼ k0(1− C∗)t
a0

. (4.12)

We note that since the concentration at the surface is not high as that in the
previous section, the front moves more slowly, and in a manner proportional to
the permeability. In order to obtain a solution for Cg

0 that satisfies (4.11) at the
front position given by (4.12), we must assume a form for fb(t) that approaches a
nonzero constant as t→ 0. Doing so, we obtain the following:

C
g
0 ∼ C∗ erfc

(
x

2
√
Dgt

)
, t→ 0. (4.13)

Figure 4.1 shows a graph of the concentration vs. x for various small times,
as listed in the figure caption. The position of the front at each time, calculated
using the exact solution (4.5b), is marked by a vertical line from C = 0 to C = C∗.
The parameters chosen are as in (3.27a) with the additional choice of

k0 = 4. (4.14)
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Figure 4.1.
In increasing order of thickness: C(x, t) vs. x for t = 0.001, 0.03, 0.09, 0.27 and the parameters
in (3.27) and (4.14).

The gaps in Fig. 4.1 occur because in the glassy region we are plotting the asymp-
totic solution given in (4.13), which has an O(

√
t) error. In contrast, there is no

time-related error in the rubbery region solution, and hence C0r(s(t), t) = C∗. We
note that though the behavior is generally the same as in section 3, now the con-
centration at the boundary is nearly C∗ and increases as a function of time. This is
because the permeability is now lower, so the surface concentration is not immedi-
ately in equilibrium with the external environment. Again, we have a steady-state
Fickian profile in the rubbery region matching to a purely Fickian profile in the
glassy region.

4.2. Long-time asymptotics

Next we look at the solution for long time. Expanding (4.5a) for large time, we
have

S(t) ∼

√
2
D0(1− C∗)t

a0
= 2b

√
Dgt, t→∞. (4.15)

Since (4.15) is the same as (3.24) with s replaced by S, in this regime our solution
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is asymptotic to (3.26) with x replaced by X = x+D0/k0:

Cg
0 (x, t) ∼ C∗

erfc b
erfc

(
x+D0/k0

2
√
Dgt

)
, t→∞. (4.16)

Rewriting (4.15) in the s notation, we have that

s(t) ∼ −D0
k0

+

√
2
D0(1− C∗)t

a0
, t→∞. (4.17)
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Figure 4.2.
In increasing order of thickness: C(x, t) vs. x for t = 5, 25, 125, 625 and the parameters in (3.27)
and (4.14).

Figure 4.2 shows a graph of the concentration vs. x for various large times, as
indicated in the figure caption. The position of the front at each time, calculated
using the exact solution (4.5b), is marked by a vertical line from C = 0 to C = C∗.
The figure uses the parameters in (3.27) and (4.14). Note that as t gets large the
surface concentration C(0, t) has nearly equilibrated to the external concentration
1.

Figure 4.3 shows how the true solution for the front, given by (4.5b), compares
with the asymptotic approximations in (4.12) and (4.17). The graph is on a
log-lin scale. Note the close agreement of both approximations, especially the
large-time approximation, which is virtually indistinguishable from the the actual
front position.
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Figure 4.3.
s(t) (thick line) and its short- and long-time approximations vs. log t.

5. Stopping fronts

Next we wish to see what happens to this system on a longer time scale. Motivated
by this goal, we note that since the length of a stretched polymer chain is on the
order of hundreds of angstroms [11] and hence physically realizable, it is reasonable
to use βr to normalize our length scale. Note that this also introduces a longer
time scale, and thus we rewrite our time variable as τ , which has the value εt.
Making these substitutions into (2.15) and (2.22), we obtain

∂2σ

∂x2 −
β2(C)
β2
r

σ = −γβ(C)
βr

C +
β(C)
βr

∂C

∂x
, (5.1a)

∂3C

∂x2∂τ
= D(C)

∂4C

∂x4 −
γβ(C)
βr

∂2C

∂x2 +
β(C)
βr

∂3C

∂x3 +
β2(C)
β2
r

∂C

∂τ
− β2(C)D(C)

β2
r

∂2C

∂x2 .

(5.1b)
Making the same parameter substitutions as in section 3 into (5.1), we have

the following:
∂2σr

∂x2 − σ
r = −γCr +

∂Cr

∂x
, (5.2a)

∂3Cr

∂x2∂τ
= D0ε

−1 ∂
4Cg

∂x4 − γ
∂2Cg

∂x2 +
∂3Cg

∂x3 +
∂Cg

∂τ
−D0ε

−1 ∂
2Cg

∂x2 , (5.2b)



Vol. 52 (2001) A spatially nonlocal model for polymer-penetrant diffusion 271

∂2σg

∂x2 − ε
−2σg = ε−1

(
−γCr +

∂Cr

∂x

)
, (5.3a)

∂3Cg

∂x2∂τ
= Dg

∂4Cg

∂x4 − γε
−1 ∂

2Cg

∂x2 + ε−1 ∂
3Cg

∂x3 + ε−2 ∂C
g

∂τ
−Dgε

−2 ∂
2Cg

∂x2 . (5.3b)

Many of the other equations from section 3 do not depend on the choice of βc,
and hence remain the same with t replaced by τ .

5.1. The rubbery region and glassy pseudostress

In particular, if we assume a series in ε for our solutions as in (3.10), but with
t replaced by τ , we see that (3.11) and (3.12) still hold. Thus we have that our
solution is given by (3.13) with t replaced by τ :

Cr
0(x, τ) = 1− (1− C∗)x

s
. (5.4)

Substituting (3.10) and (5.4) into (5.2a), we obtain

∂2σr
0

∂x2 − σ
r
0 = −γ +

(1− C∗)(γx− 1)
s

,

the solution of which is

σr
0(x, τ) = γ − (1− C∗)(γx− 1)

s
+

sinhx
sinh s

[
σ∗ − γC∗ −

(1− C∗)
s

]
+

sinh(s− x)
sinh s

[
σb(t)− γ − (1− C∗)

s

]
. (5.5)

In the glassy region, we assume a perturbation series for our solutions as in
(3.16), but with t replaced by τ . In this case, the leading order of (5.3a) becomes
σg
0 = 0, and hence an interior layer is needed. Since (3.5a) and the solution for σg

0
still hold, the equations for the concentration must be as in section 3, except our
expression for s will now be different. For the interior layer, the only difference is
that since (5.3a) has an ε−2 term in it, our interior-layer variable must be

ζ =
x− s(t)

ε
.

Using this scaling, we obtain the same dominant balance in (5.3a) as in section 3.
Thus

σ+(ζ, τ) = σ∗e
−ζ , (5.6)

as before.
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5.2. The front position

Due to the narrower interior layer on this time scale, the pseudostress now con-
tributes to the front condition (3.7). Using our boundary-layer scalings, we obtain,
to leading order,

−σ∗ +D0
(1− C∗)

s
= a0ṡ, (5.7)

where we have used (5.4) and (5.6) and the dot now indicates differentiation with
respect to τ . Integrating, we have

σ∗τ

a0
= −s− D0(1− C∗)

σ∗
log
(

1− sσ∗
D0(1− C∗)

)
, (5.8)

where we have used (3.9), which also holds on the τ time scale. Equation (5.8)
gives s implicitly as a function of τ . However, it will often be more convenient to
work with (5.7) directly.

We note from (5.8) that

s(τ) ≤ D0(1− C∗)
σ∗

≡ s∞ (5.9)

for all τ . Therefore, we see that this front will stop at the finite location s∞, which
is independent of a0, which relates the flux differential to the front speed. This
behavior is in sharp contrast to the usual models involving viscoelastic memory
effects [31], [32], since in that case the stress would have to decay away to zero in
order to maintain equilibrium at a stopping front. Since the stress usually remains
of one sign and is a hereditary effect, that will not occur in such models.

However, in our model a stopping front may be maintained by a nonzero pseu-
dostress. In particular, we see that since the polymer is in effect equilibrated to
leading order in the rubbery region, on a slow time scale there will not be a large
enough flux to overcome the differential a0ṡ, and hence the front will stop. When
the diffusion in the rubbery region is weak (D0 is small), the exterior concentra-
tion is near the rubber-glass transition (1−C∗ is small), or the pseudostress at the
interface σ∗ is large, then the front will not penetrate very far into the polymer,
and conversely. Rewriting (5.8) using our definition of s∞, we obtain

σ∗τ

a0
= −s− s∞ log

(
1− s

s∞

)
. (5.10)

Figure 5.1 shows a graph of the pseudostress vs.x for various times, which are
listed in the figure caption. The position of the front at each time, calculated
using the exact solution (5.10), is marked by a vertical line from σ = 0 to σ = σ∗.
With these parameters, we see that s∞ = 9/4. We note that we have a peak in
the pseudostress in the rubbery region behind the front. This type of behavior
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Figure 5.1.
In increasing order of thickness: σ(x, τ) vs. x for τ = 0.1, 0.5, 2.5, and 12.5 and the parameters
in (3.27) and (4.14).

has been seen in the stress in viscoelastic models, but previously only in a region
localized near the front [24]. We note that each of the terms in (5.5) remains
bounded as τ →∞, so the peak asymptotes to a finite value.

Physically, σ builds up more quickly in the rubbery region than can be ade-
quately dispersed in the glassy region. This sort of “overshoot” has been seen in
the concentration profiles in these sorts of polymer-penetrant systems [23].

6. Asymptotics

We now turn to the last part of our analysis: the study of Cg
0 . As mentioned in

the previous section, the solution is governed by (3.18), (3.19), and (3.25) with t
replaced by τ . However, as in section 4 there is not a simple expression for s(τ),
and so we must use Boley’s method. The solution is given by (4.10) with t replaced
by τ .
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6.1. Small-time asymptotics

We begin with small-time asymptotics. Letting

s(τ) ∼ s0τα, τ → 0; α > 0, (6.1)

in (5.7), we obtain

−σ∗ +D0
(1− C∗)
s0τα

= a0s0ατ
α−1,

and thus the leading-order balance is given by α = 1/2. Substituting this into the
above, we have the following:

s(τ) = 2b
√
Dgτ , τ → 0, (6.2)

as in (3.24). Therefore, our solution for small time is given by (3.26) with t replaced
by τ :

Cg
0(x, τ) = C∗

erfc(x/2
√
Dgτ)

erfc b
, τ → 0. (6.3)

The reason why (6.2) and (6.3) should hold can best be explained using the theory
of matched asymptotic expansions. Since t is essentially an initial-layer variable
for τ , the behavior of the functions s and Cg

0 as τ → 0 should exactly match those
in section 3 as t→∞.
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Figure 6.1.
In increasing order of thickness: C(x, τ) vs. x for τ = 0.01, 0.03, 0.09, and 0.27 and the parameters
in (3.27) and (4.14).
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Figure 6.1 shows a graph of the concentration vs. x for the small-time values
shown in the figure caption. The position of the front at each time, calculated using
the exact solution (5.10), is marked by a vertical line from C = 0 to C = C∗. Here
the solution in the rubbery region is exact as given in (5.4), while the solution in
the glassy region is the asymptotic approximation in (6.3). (This explains the small
gap in the solution for the larger τ values.) Note that the solution looks nearly
Fickian, due to the smaller width of the rubbery region where the nonlocality is
greater. Again, behind the front we have a steady-state Fickian profile due to the
greater equilibration in the rubbery region.

6.2. Long-time asymptotics

Next we examine the front position for large time. Motivated by (5.9), we let

s(τ) ∼ s∞ [1− s∆(τ)] , τ →∞, (6.4)

where s∆(τ)→ 0+ as τ →∞. Substituting (6.4) into (5.10), we obtain, to leading
order,

s∆(τ) = exp
(
−1− σ∗τ

a0s∞

)
. (6.5)
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Figure 6.2.
s(τ) (thick line) and its short- and long-time approximations vs. τ .
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Figure 6.2 shows how the true solution for the front, given by (5.10), compares
with the asymptotic approximations in (6.2) and (6.4). Note the close agreement
of both approximations in their regions of validity.

Since s(τ) approaches a constant as τ →∞, it is more convenient to introduce
the new variables

ξ = x− s∞, T (x, τ) = T∞(ξ, τ), (6.6)

into (4.6)–(4.9). In particular, (4.6) becomes

T∞(0, τ) = fb(τ). (6.7)

Since the operators are invariant under translation, we obtain the same solution
as in (4.10) for T∞. However, there is one minor point regarding (6.7) that must
be addressed.

With the change in variables in (6.6), T∞(ξ, τ) and Cg
0 agree in the range

ξ > s(τ) − s∞. Since the right-hand side is always negative, we see that the line
ξ = 0 where we impose our FBC fb(τ) in (6.7) is now interior to the domain.
However, this is not a concern since the positioning of the fictitious condition is
chosen in order to simplify the algebra.

Our front condition (4.9) is now given by

T∞(−s∞s∆(τ), τ) = C∗,

which can be approximated using the smallness of s∆ as

fb(τ) − s∞s∆(τ)
∂T∞
∂ξ

(0, τ) = C∗, (6.8)

where we have used (6.7).
Motivated by (6.8), we write

fb(τ) = C∗ + f∆(τ), (6.9)

where f∆(τ) → 0 as τ →∞. Clearly (6.9) satisfies (6.8) as τ →∞. Substituting
(6.9) into (4.10), we obtain

T∞(ξ, τ) = C∗ erfc

(
ξ

2
√
Dgτ

)
+ T∆(ξ, τ), (6.10a)

T∆(ξ, τ) =
ξ

2
√
πDg

∫ τ

0

f∆(z)
(τ − z)3/2 exp

[
− ξ2

4Dg(τ − z)

]
dz. (6.10b)

Taking the derivative of (6.10) and retaining only the leading-order terms yields

∂T∞
∂ξ

(0, τ) = − C∗√
πDgτ

. (6.11)
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Substituting (6.9) and (6.11) into (6.8), solving for f∆(τ), and using the result
in (6.10), we have the following:

T∆(ξ, τ) = − s∞C∗

e
√
πDg

×{
ξ

2
√
πDg

∫ τ

0
exp

(
− σ∗z

a0s∞

)
1

(τ − z)3/2√z exp
[
− ξ2

4Dg(τ − z)

]
dz

}
. (6.12)

We wish to find an asymptotic formula for T∆(ξ, τ) which is valid as τ → ∞.
There is no local maximum in the arguments of the exponentials in the integrand,
but a plot of the integrand confirms that the dominant contributions are from the
endpoints. At z = τ , both the exponentials become transcendentally small, while
at z = 0, the exponentials are O(1). Hence we also expand (6.12) about z = 0:

T∆(ξ, τ) ∼ −s∞C∗ξ
2Dg

√
a0s∞
σ∗πτ3 exp

(
−1− ξ2

4Dgτ

)
erf
(√

σ∗τ

a0s∞

)
. (6.13a)

However, we note that (6.13a) does not satisfy (6.7). This is due to the fact
that for small ξ, the second exponential in (6.12) becomes small slowly. Therefore,
we expand (6.12) about z = τ :

T∆(ξ, τ) ∼ − s∞C∗

e
√
πDgτ

exp
(
− σ∗τ

a0s∞

)
erfc

(
ξ

2
√
Dgτ

)
. (6.13b)

Equation (6.13b) does satisfy (6.7). We note that if we add them together, we
obtain a uniform expansion, since in any region away from ξ = 0 (6.13a) is tran-
scendentally small when compared with (6.13b). Near ξ = 0, (6.13b) is O(ξ/τ)
smaller than (6.13a).

Therefore, we have that

T∞(ξ, τ) = C∗ erfc

(
ξ

2
√
Dgτ

)

− s∞C∗

e
√
πDgτ

{
ξ

τ

√
a0s∞
σ∗Dg

exp
(
− ξ2

4Dgτ

)
erf
(√

σ∗τ

a0s∞

)

+ exp
(
− σ∗τ

a0s∞

)
erfc

(
ξ

2
√
Dgτ

)}
, (6.14)

where we have used (6.10a).
Figure 6.3 shows a graph of the concentration vs. x for the large-time values

shown in the figure caption. The position of the front at each time, calculated
using (5.10), is marked by a vertical line from C = 0 to C = C∗. Here the solution
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Figure 6.3.
In increasing order of thickness: C(x, τ) vs. x for τ = 3, 6, 12, and 15 and the parameters in
(3.27) and (4.14).

in the rubbery region is exact as given in (5.4), while the solution in the glassy
region is the asymptotic approximation in (6.14). (This explains the small gap
in the solution for τ = 3.) Note that though the time values increase linearly,
the front position slows as it approaches its limiting value 9/4. Note also that
the solution in the glassy region is nearly linear, indicating the near steady-state
behavior of the function.

Some discussion of s∞ is appropriate. We note that in this case s∞ is only a few
times the characteristic length of a polymer chain in the rubbery state. However,
due to the entangled nature of the polymer network, even at such a small depth
there will be a great many “pockets” through which the penetrant diffuses.
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7. Lower permeability

Now we examine the case where the permeability is not quite so large. We again
assume that k = k0ε

−1. Since the only dependence of (4.3) on t is through s,
equation (4.3) also holds on the τ time scale:

Cr
0(x, τ) = C∗ +

k0s(1− C∗)
k0s+D0

(
1− x

s

)
. (7.1)

Note that in the limit that k0 →∞, (7.1) reduces to (5.4).
Substituting (7.1) into (5.2a), we have the following:

∂2σr
0

∂x2 − σ
r
0 = −γ

[
C∗ +

k0s(1− C∗)
k0s+D0

(
1− x

s

)]
− k0(1− C∗)

k0s+D0
,

the solution of which is

σr
0(x, τ) = γ

[
C∗ +

k0s(1− C∗)
k0s+D0

] [
1− sinh(s− x)

sinh s

]
− k0(1− C∗)(γx− 1)

k0s+D0

+
sinhx
sinh s

[
σ∗ − γC∗ −

k0(1− C∗)
k0s+D0

]
+

sinh(s− x)
sinh s

[
σb(τ) − k0(1− C∗)

k0s+D0

]
. (7.2)

Our work from section 5 for the glassy region remains unchanged, and hence
we may substitute (7.2) and (5.6) into (3.7) to obtain

−σ∗ +
D0(1− C∗)

S
= a0Ṡ, (7.3)

where S is defined as in section 4. But we note that the operator in (7.3) is the
same as the operator in (5.7), except now the operator holds for S. Solving, we
have

σ∗τ

a0
= −s− s∞ log

(
1− s

s∞ −D0/k0

)
. (7.4)

Note that in the limit that k0 →∞, (7.4) reduces to (5.10).
It is clear that if s ever equals s∞ − D0/k0, the front will stop. (This is

equivalent to S = s∞.) Therefore, we define u∞ = s∞ −D0/k0, so (7.4) becomes

σ∗τ

a0
= −s− s∞ log

(
1− s

u∞

)
. (7.5)

We now note that there are two distinct cases, depending on the sign of u∞.
We begin by examining the small-time asymptotics. Substituting (6.1) into (7.3),
we obtain

−σ∗ + k0(1− C∗)
(

1− k0s0τ
α

D0

)
= a0s0ατ

α−1,
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which implies that α = 1 and

−σ∗ + k0(1− C∗) = a0s0. (7.6)

However, now we note a problem. If u∞ < 0, this implies that

k0(1− C∗) < σ∗, (7.7)

and hence the right-hand side of (7.6) is negative, implying a front that moves
to the left. The physical interpretation can be gleaned from (7.7). In this case,
the permeability is so low that the amount of penetrant allowed into the matrix
cannot surmount the flux barrier given by the a0 term in (7.6). Therefore, we now
focus on the case where s∞ −D0/k0 > 0.
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0.2 0.4 0.6 0.8 1 1.2 1.4

σ(x, τ)

x

Figure 7.1.
In increasing order of thickness: σ(x, τ) vs. x for τ = 0.1, 0.5, 2.5, and 12.5 and the parameters
in (3.27) and (4.14).

Figure 7.1 shows a graph of the pseudostress vs. x for various times, which
are listed in the figure caption. The position of the front at each time, calculated
using the exact solution (7.5), is marked by a vertical line from σ = 0 to σ = σ∗.
We note that the peak that developed in section 5 has not developed here. Due
to the boundary condition (4.2), the surface concentration starts out at C∗ and
only eventually asymptotes to 1. Therefore, σ does not increase as quickly in the
rubbery region.
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Continuing to solve (7.6), we see that

s(τ) ∼ [k0(1− C∗)− σ∗]τ
a0

, τ → 0. (7.8)

We note that the front moves more slowly now since the permeability is smaller.
Since the front moves more slowly than

√
τ , we may again assume a form for fb(τ)

that approaches a nonzero constant as τ → 0. Thus, we again obtain (4.13) with
t replaced by τ :

C
g
0(x, τ) ∼ C∗ erfc

(
x

2
√
Dgτ

)
, τ → 0. (7.9)

0

0.1

0.2

0.3

0.4

0.5

0.02 0.04 0.06 0.08 0.1

C(x, τ)

x

Figure 7.2.
In increasing order of thickness: C(x, τ) vs. x for τ = 0.01, 0.03, 0.09, and 0.27 and the parameters
in (3.27) and (4.14).

Figure 7.2 shows a graph of the concentration vs. x for the small-time values
shown in the figure caption. The position of the front at each time, calculated
using the exact solution (7.5), is marked by a vertical line from C = 0 to C = C∗.
Here the solution in the rubbery region is exact as given in (7.1), while the solution
in the glassy region is the asymptotic approximation in (7.9). (This explains the
gap in the solution for the larger τ values.) As mentioned earlier, we see that the
surface concentration is very near C = C∗ in this time regime.
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To do the long-time asymptotics, we redefine s∆ in the following manner:

s(τ) ∼ u∞ [1− s∆(τ)] , τ →∞. (7.10)

(Here it becomes clear why there is no solution if u∞ < 0.) Substituting (7.10)
into (7.5) and using the smallness of s∆, we obtain

s∆(τ) = exp
(
−u∞
s∞
− σ∗τ

a0s∞

)
. (7.11)

Note that in the limit that k0 →∞, (7.11) reduces to (6.5).
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Figure 7.3.
s(τ) (thick line) and its short- and long-time approximations vs. τ .

Figure 7.3 shows how the true solution for the front, given by (7.5), compares
with the asymptotic approximations in (7.8) and (7.10). Note the close agreement
of both approximations in their regions of validity.

If we replace the definition of ξ in (6.6) by

ξ = x− u∞, (7.12)

the solution process for T∞ proceeds as before, with f∆ being given by

f∆(τ) = −u∞
C∗√
πDgτ

exp
(
−u∞
s∞
− σ∗τ

a0s∞

)
, (7.13)
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where we have used (7.11).
Keeping close track of which of the s∞ remain and which get changed to u∞,

it is relatively straightforward to see that equation (6.14) is replaced by

T∞(ξ, τ) = C∗ erfc

(
ξ

2
√
Dgτ

)
− u∞C∗e−u∞/s∞√

πDgτ
×{

ξ

τ

√
a0s∞
σ∗Dg

exp
(
− ξ2

4Dgτ

)
erf
(√

σ∗τ

a0s∞

)
+ exp

(
− σ∗τ

a0s∞

)
erfc

(
ξ

2
√
Dgτ

)}
.

(7.14)
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Figure 7.4.
In increasing order of thickness: C(x, τ) vs. x for τ = 6, 10, 14, 18, and the parameters in (3.27)
and (4.14).

Figure 7.4 shows a graph of the concentration vs.x for the large-time values
shown in the figure caption. The position of the front at each time, calculated
using the exact solution (7.5), is marked by a vertical line from C = 0 to C = C∗.
Here the solution in the rubbery region is exact as given in (7.1), while the solution
in the glassy region is the asymptotic approximation in (7.14). (This explains the
small gap in the solution for τ = 6.) Note that though the time values increase
linearly, the front position slows as it approaches its limiting value 9/4. Note also
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that the solution in the glassy region is nearly linear, indicating the near steady-
state behavior of the function. Note that as τ gets large the surface concentration
C(0, τ) has nearly equilibrated to the external concentration 1.

8. Conclusions

Penetrant diffusion in polymers cannot be described by Fick’s Law alone. It has
become common to model such nonstandard effects by considering the polymer
entanglement network as a viscoelastic material and introducing a relaxation time
[2], [33], [34]. This introduces a nonlocal effect in time via the introduction of
a hereditary integral [4], [5]. However, due to the morphology of the network, it
is also reasonable to include nonlocal spatial behavior to model the nonstandard
effects.

Following the reasoning in [7], we postulate that the chemical potential depends
not only on the concentration C̃, but also on the pseudostress σ̃, which incorporates
the nonlocal spatial effects. In so doing we obtain a single partial integrodifferential
equation which can be split into a set of two coupled partial differential equations.
With further physically reasonable assumptions, the model may be reduced to one
fourth-order partial differential equation.

These assumptions necessitated stating the system as a moving boundary-value
problem. The moving interface separated two zones where two different types
of equations held: a steady-state Fickian operator for the concentration in the
rubbery region, and a standard Fickian operator for the concentration in the glassy
region. The equations for the pseudostress varied with the characteristic scales
chosen. When scaling, we related the characteristic length and time scales, thus
creating a system where rescaling one forced the rescaling of the other.

We solved the resulting problem on two different time scales and with two
different radiation conditions. On the faster time scale with a highly permeable
exposed surface, the front moves in a purely Fickian way. The concentration in
the rubbery region exhibits a linear profile, while Fickian profiles appear in the
glassy region. This is due to the fact that in the glassy region the effects of
the nonlocality are negligible (as seen in the leading-order value of zero in the
pseudostress), while in the rubbery region the expansion and disentangling of the
polymer entanglement network leads to a faster equilibration. This is confirmed
by the nonzero value of the pseudostress in the glassy region.

With an O(1) balance in the radiation condition, the front still moves as if the
problem were Fickian. It starts off more slowly, since there is a smaller concen-
tration gradient at the surface. However, it quickly undergoes a transition to a
Fickian profile at longer time scales. In this case, the concentration profiles can
not be found explicitly, but by using an integral method due to Boley [29] we were
able to construct long- and-short time asymptotic solutions.

On the longer time scale with a highly permeable exposed surface, we discov-
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ered that the moving interface stopped as τ → ∞, decaying exponentially to an
equilibrium value. This behavior has not been seen in viscoelastic models, and
in our model is a direct result of the spatial form of the nonlocality. The con-
centration profiles again were steady-state Fickian and Fickian in the glassy and
rubbery regions respectively, but the effect of the memory is enhanced due to the
longer spatial scales considered. This buildup in the memory effect slows the front
down, as seen previously [23], and the slowing front causes the pseudostress to
bulge behind it, as shown in Fig. 5.1. The front may progress only a few charac-
teristic lengths of the polymer strands, but due to the nature of the entanglement
network, this may include a large number of pockets. To construct a uniformly
long-time approximation to the integral solution resulting from Boley’s method,
the contributions from two points must be summed.

With an O(1) balance in the radiation condition, the front will still stop, but
there is a shift to the left in the front position. In order for the front actually to
advance into the polymer, a condition on the permeability, given by (7.7), must
hold. Due to the fact that the surface concentration increases slowly, no bulge in
the pseudostress is seen.

Though this work obviously presents only one application of the new model,
the behavior shown captures essential facets of the behavior of both the physi-
cal system and the viscoelastic model. However, in contrast to the viscoelastic
models, the new model captures the behavior of stopping fronts, which appear in
experiments of desorption in polymers [35]. In further work we will analyze the des-
orption and “skinning” problems directly, as well as sorption in other geometries.
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Nomenclature

Variables and Parameters

Units are listed in terms of length (L), mass (M), moles (N), or time (T ). If
the same letter appears both with and without tildes, the letter with a tilde has
dimensions, while the letter without a tilde is nondimensionalized. The equation
where a quantity first appears is listed, if appropriate.

ã: coefficient in flux-front speed relationship, units N/L3.
b: constant, defined in (3.24) as [D0(1− C∗)/(2a0Dg)]1/2.

C̃(x̃, t̃): concentration of penetrant or diluent at position x̃ and time t̃, units
N/L3.



286 D. A. Edwards ZAMP

D̃(C̃): binary diffusion coefficient for system, units L2/T .
E(C̃): coefficient preceding the σ̃ term in the modified diffusion equation, units

NT/M (2.5).
f(·): arbitrary function, variously defined (2.1).

J̃(x̃, t̃): flux at position x̃ and time t̃, units N/L2T (2.5).
K(C̃): nonlinear function of proportionality, units N2T/ML3 (2.5).

k̃: coefficient measuring permeability of exposed surface, units L/T (2.10).
S(·): shifted front position at time ·, value s(·) +D0/k0 (4.4a).
s̃(t̃): position of rubber-glass transition front at time t̃, units L (2.11).

T (·, ·): fictitious representation of Cg
0 used in Boley’s method (4.6).

t̃: time from imposition of external concentration, units T .
u∞: shifted front stopping position, value s∞ −D0/k0 (7.5).
X : shifted spatial coordinate, value x+D0/k0.
x̃: spatial coordinate, units L (2.1).
Z: the integers.
z: dummy variable (2.1).
α: arbitrary exponent, variously defined (6.1).

β(C̃): inverse of the dependence length, units L−1.
γ: dimensionless parameter, value η/νβr (3.3b).
ε: perturbation expansion parameter, value βr/βg.
ζ: dimensionless interior layer variable about glass-rubber interface (3.20).
η: coefficient of concentration in σ̃ evolution equation (2.3), units ML/NT 2.
ξ: shifted spatial coordinate (6.6).
µ̃: chemical potential, units ML2/T 2N .
ν: coefficient of ∂C̃/∂t̃ in σ̃ evolution equation (2.3), units ML2/NT 2.

σ̃(x̃, t̃): memory term in flux at position x̃ and time t̃, units M/LT 2.
τ : compressed time variable, value εt.

Other notation
b: as a subscript, used to indicate the boundary x̃ = 0 (2.9).
c: as a subscript, used to indicate the characteristic value of a quantity (2.7).

ext: as a subscript, used to indicate the exterior ambient concentration (2.10).
g: as a sub- or superscript, used to indicate the glassy state (2.7).

j ∈ Z: as a sub- or superscript, used to indicate a term in an expansion in ε.
r: as a sub- or superscript, used to indicate the rubbery state (2.7).

∆: as a subscript, refers to the deviation from an asymptote (6.4).
∗: as a subscript, used to indicate at the transition value between the glassy

and rubbery states (2.7).
∞: as a subscript, used to indicate a limiting value as τ →∞ (5.9).
+: as a superscript on σ, used to indicate a boundary-layer expansion in the

glassy region (3.20).
˙ : used to indicate differentiation with respect to t (2.20) or τ (5.7).
′: used to indicate a dummy variable (2.1).

[·]s̃: jump across the front x̃ = s̃(t̃), defined as ·g(s̃+(t̃), t̃)− ·r(s̃−(t̃), t̃).
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