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CONSTANT FRONT SPEED IN WEAKLY DIFFUSIVE
NON-FICKIAN SYSTEMS*

DAVID A. EDWARDSs!

Abstract. In certain polymer-penetrant systems, the effects of Fickian diffusion are dominated
by nonlinear viscoelastic behavior. Consequently, such systems often exhibit concentration fronts
unlike those seen in classical Fickian systems. These fronts not only are sharper than in standard
systems but also propagate at constant speed. The mathematical model presented is a moving
boundary-value problem, where the boundary separates the polymer into two distinct states, glassy
and rubbery, where different physical processes dominate. The moving boundary condition that
results is not solvable by similarity solutions but can be solved by integral equation techniques. In
the case under consideration, namely, one where the standard Fickian diffusion coefficient is small,
asymptotic solutions where a comparatively sharp front moves with constant speed are obtained.
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1. Introduction. As engineers continue to find new uses for polymers and other
synthetic materials [1]-[5], entire industries have been revolutionized and new ones
created. Suddenly, materials science has been thrust to the forefront of mathemat-
ical applications as engineers and mathematicians alike scramble to understand the
dynamics of these new materials. Unfortunately, neither group has come to a full
understanding of the exact physical mechanisms involved in such systems. However,
all agree that the unusual phenomena these new materials exhibit indicate that the
standard Fickian flux J = —D(é)Vé, where D(é) is the second-order diffusion tensor
and C is the concentration, is not general enough to model such systems correctly.
In addition, there is a growing consensus that some sort of viscoelastic stress plays
a major role in the dynamics of many of these materials, sharing dominance with or
robbing control from standard Fickian diffusion.

Polymer-penetrant systems are particularly intriguing since much of the observed
behavior cannot be explained by a purely Fickian diffusion model. For instance, un-
less pathological conditions are met, a Fickian front always propagates with speed
proportional to {—1/2. However, in so-called case II diffusion in polymers, concentra-
tion fronts move with constant speed [6], [7]. These fronts are usually sharper than
those of the Fickian diffusion model. However, there is no discontinuity in C as can
be found in other, more standard chemical systems [8].

The type of polymers that we study are characterized by two distinct phases:
glassy and rubbery. In the glassy state, the polymer has a finite relazation time
associated with the length of the polymer in relation to the entanglement network.
This nonlocal effect implies that there will be a stress related to the “memory” of the
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polymer with respect to its concentration history. In the rubbery state, the polymer
swells; making the relaxation time almost instantaneous. Hence, the “memory” of the
polymer in the rubbery state is very faint [9].

To model this unusual behavior, Edwards and Cohen [10] have proposed a much
more general model for the flux, which can accomodate many terms. Each term in the
expansion represents a flux contribution from a different source, including such effects
as molecular diffusion and viscoelasticity. Furthermore, each term can be derived
directly from an augmented chemical potential. This form for the flux is general
enough to model accurately many more types of anomalous diffusive behavior than
simply those associated with polymer-penetrant systems.

In [10]-[18] the authors present specialized forms of the general model to examine
several different cases of viscoeleastic diffusion in polymer-penetrant systems. In this
paper we will do likewise. We expect to find this unusual behavior in systems where
the effects of Fickian diffusion have been swamped by some other effect. Therefore, we
will consider the effect of a small diffusion coefficient in a polymer-penetrant system.

In § 2 we enumerate the equations in the general model except for the conditions
at the moving boundary, which we describe in §3. In §4 we specialize our general
model to the case that we wish to consider. Small- and large-time asymptotics are
performed in §§5 and 6.

2. Governing equations. To have faith in our model, we need to replicate
several important properties of polymer-penetrant systems that are generally found in
experiments. First, we expect there to be only two dominant processes in our system:
molecular diffusion and viscoelasticity. Therefore, we expect our flux expansion to
have two terms instead of the one term modeled by Fickian diffusion. In the glassy
state, the polymer has a finite relaxation time [19], which indicates the presence of a
viscoelastic memory term in our flux. The polymer is affected by past values of the
concentration and its time derivative [7], [20], [21].

We wish to reduce our problem to one dimension, so we write the flux as

(2.1a) J = —D(C)C5 — B(C)ész,

where

(2.1b) 5’:/0 [nC(i‘,t’)—i—VC'g(i‘,f’)] exp [— /{I ﬁ(é(i‘,z))dz] dt’.

Here ﬁ(é) is the inverse of the relaxation time for the polymer, E(é) is a stress
coefficient term, and 7 and v are constants. Further justification for an expansion
such as (2.1) may be found in Edwards and Cohen [10]. We also note that & plays
the role of the viscoelastic memory term and can be considered analogous to a stress
term. In addition, the definition of & in (2.1b) implies that

(2.2) 5(#,0) = 0.

The term ﬁ(é) is the inverse of the relaxation time, which corresponds roughly
to the time needed for one part of the polymer to respond to changes in neighboring
parts. In the polymer-penetrant systems in which we are interested, ﬁ(é) changes
greatly as the polymer goes from the glassy state to the rubbery state. Therefore, its
dependence on C will be important, although the differences in ﬁ(é) within phases
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are negligible when compared with the differences between phases. Hence, we model

B(C') by its average in each phase, yielding the following functional form:

) By, 0< C~'~§ C'*N(glass),
23 8le) = {ﬁi, Cy < C < C. (rubber),

where C. is the concentration at which the rubber—glass transition occurs. Subscripts
and superscripts r refer to the rubbery region; subscripts and superscripts g refer
to the glassy region. This choice for ﬁ(é) also has the advantage that it makes the
problem more tractable analytically.

It has been shown experimentally that the qualitative effects of the variance of
E(é) on the concentration are essentially negligible. Since we are eventually going
to consider the case of a weakly diffusive system, we also conclude that variations

in D(C) will not contribute qualitatively to the solution. Thus, we approximate
E(C) and D(C) by their averages over the range of concentration and treat them
as constants, which we denote by F and D). More discussion of various physically

appropriate forms for D(C) and F(C) can be found in Cohen and White [11].

Substituting (2.1a) and our expressions for D(C) and E(C) into the standard
diffusion operator Cz = —.J5, we have

(2.4&) CN'g = Déi'i' + Bz,
We also note that equation (2.1b) is the solution to the following equation:
(2.4b) 57+ B(C)e = nC + vCy.

We wish to model the penetration of solute imposed at a concentration C. on the
boundary of an initially “dry” and unstressed semi-infinite polymer. Mathematically,
we wish to solve equations (2.4) on the interval & > 0 subject to (2.2) and the following
boundary and initial conditions:

(2.5) C,i)=C.,  C(#0)=0.

In addition, on physical grounds we expect that as the experiment progresses, the
polymer will become totally saturated. The mathematical condition, which we will
impose only when warranted, is

(2.6) C(#,00) = Ct.

This condition, which is naturally satisfied by the full problem due to its parabolic
nature, is needed when we attempt to use perturbation techniques to solve the com-
plicated moving boundary-value problem.

We wish to incorporate effects of both the glassy and the rubbery phases in our
nondimensionalization. We normalize & by our diffusive length scale in the glassy
region, since we wish to track front motion on a macroscopic level and the diffusive
length scale in the glassy region is the longer length scale. However, it has been seen in
experiments and numerical simulations [22] that these fronts move quickly; therefore,
we normalize ¢ by the relaxation time in the rubbery region, which is the faster time
scale. We normalize C by C. and & by vC.. Summarizing, we have

(2.7) w==% L t=18., Cl(z,t)= (gc’), oz, t) = 1(/25) s

Q

o
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Then equations (2.2) and (2.4)—(2.6) reduce to

(28&) Ct = %Cxx + Vgg‘g Orzx,

(2.8b) ot + ﬁ(ﬁf) o= %c + G,

(2.9) c(0,t) =1, C(z,0) =0, o(x,0) =0,
(2.10) Cx,00) = 1.

Since B(C') is constant on either side of the threshold level C' = C\, we may
differentiate and combine equations (2.8a) and (2.8b) to yield

3. Front conditions. Due to our choice of a piecewise-constant function to
model 3(C), our problem will involve matching the solutions in the two regions where
8 = By and 8 = f,. Thus, it is necessary to impose conditions at the moving boundary
§(t~) between the two regions. First, it is clear that since Cix < 1, our front has an
initial condition §(0) = 0.

In a moving boundary-value problem, several conditions need to be imposed at
the moving front # = 5(f). In polymer-penetrant systems, one does not see a jump in
concentration but rather a sharp rise at a moving front [7]. However, the front is still
relatively wide when compared with molecular length scales; so the continuum model
we use 1s still valid. Since there is no jump in concentration, C should be continuous
at the front at the specified transition value C:

(3.1) Cr(3(f),1) = C = C9(53(1),1).

We also need a condition for the stress at the front. Although some models
incorporate discontinuities in the stress at the front [23], in our model we require that
the stress be continuous:

(3.2) &7 (5(),1) = 69(5(¢),1)

This choice is consistent with (3.1) above, which we derived by using the reasoning
that although our relevant dependent variables may change quickly near the front,
they are still continuous.

Last, we need a relationship between the flux J at the front and the speed at
which the front travels. Since the polymer undergoes a phase transition from a glassy
to a rubbery phase, we use the flux condition from the Stefan problem [8], which is

(3.3) [J]s = —a—,

where []; = -9(3+(t),1) — 7 (5 (1),1).
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In a standard problem, the constant a is related to the latent heat of melting of
the substance. However, here we are assuming that a “phase transition” takes place
in the polymer as we go from the glassy to the rubbery state. Experimentally, this has
been shown to be related to a stretching of the polymer, which reduces the amount
of stress quickly, although not discontinuously. In fact, an experiment where a can
be measured directly can be designed [10], [18]. The flux used by the polymer in this
stretching is directly analogous to the energy used in melting in a standard two-phase
heat conduction problem. Using (2.1a) in (3.3), we have the following:

(3.4) [DCs + Eéz)s = a—.

Since the stretching of the polymer reduces the stress, we expect that as the system
reaches a steady state, we should see the stress increasing in the glassy polymer,
reaching a continuous maximum in the rubbery polymer near the concentration front
and then decaying quickly to 0 in the fully relaxed rubbery polymer. This behavior
has been seen in other numerical simulations of the equations of Thomas and Windle
[22].

Using our dimensionless variables (2.7) in (3.1), (3.2), and (3.4) and the same
length scale for s as for &, we have

(3.5) Cr(s(t),1) = Cu = C9(s(1), 1),
(3.6) or(s(t),t) = o9(s(t),1),
(3.7) [DCy + vEoy), = “gﬁ’” 8,

where the dot indicates differentiation with respect to ¢t and a = d/éc.
To simplify our analysis, we now wish to remove o, from (3.7). In [10] Edwards
and Cohen show how (3.7) may be rewritten as

(3.8) (D + vE)[Ca]s + vE (% _ ) o(s(),0) _ aDp,

'

$ By
by using (2.8b) to solve for ¢ and then using our front conditions.

Equation (3.8) now replaces (3.7) as the last equation governing our system.
Although o still remains in (3.8), in general practice it is easier to compute ¢ than o,.
Experimentally it has been shown that polymers have a near-instantaneous relaxation
time in the rubbery state, while in the glassy state these substances are characterized
by finite relaxation times. Hence, we assume that §,/8, = ¢, where 0 < ¢ < 1.
We now wish to solve these equations by using perturbation expansions in the small
parameter ¢ to show that in a certain limit these equations lead to constant front
speed.

4. The weakly diffusive case. In the weakly diffusive case, we assume that
the diffusion coefficient is always small, i.e., D = Dpe. For reasons that will become
clear later, we wish to restrict the parameter range that we consider to the following:

1= (14 2a—2va%+ a)?
(4.1) Ci < 0 ta)

, a > 0.
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The second restriction may seem obvious since we have considered a to be analogous
to a latent heat, although there are polymer-penetrant systems where this is not the
case [10], [18].

Substituting our parameters into (2.11) and (2.8b), we see that for C' > C. we
have

eDyg +vE € Nk
4.2a Cli=—7—0C6,—Cl+— (D + —) Cra,
( ) tt Do t t Do 0 69

(4.2b) ol + o7 = L cry oy,

vy

while for €' < Uy we have the following equations:

E
4. 9 =0TV 09 08+ —  Doe+ =) 8,
(4.32) Ct Do Cooe — €07 + Do ( o€+ By ) Cre,
ne

4.3b 0d +eoc9 = —C9+ CY.
( ) t Vﬁg t
In addition, (3.8) becomes

t),1
(4.4) (Doe + vE)[Cole + vB(c— 1) TEWN _ e

s

We now construct series for C' and ¢ in € by assuming that C' = C% 4 o(1) and
o = c%+0(1). Doing so, we see that, to leading order, (4.2) and (4.3) become

(4.5a) O =~Con — O,
(4.5D) of" + 00 =P,
(4.6a) Cif =+CJ%4,,
(4.6b) o0 = 9,

where v = vE/Dy.
Solving (4.6b) subject to (2.9), we see that

(4.7a) oV = (09,
from which (3.5) implies that

(4.7b) o(s(t),t) = Cs.
Then (4.4) becomes, to leading order,

C as

(1.9 8- =
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The form of (4.8) immediately indicates that the commonly used method of sim-
ilarity transformations will not work for this problem. We will have to solve the full
partial differential equations and then match these solutions at the moving boundary.
To do so, we adopt the integral method used by Boley [24]. In his paper, he ex-
tended the equations that held on either side of the front to the entire domain. Then
by introducing fictitious boundary conditions that held in the extended part of each
equation’s domain, he was able to construct solutions to the moving boundary-value
problem. Following that method, we introduce two new quantities, 79 and 77, which
extend each of (4.5a) and (4.6a) to the full semi-infinite region. We then ensure that
each of these solutions satisfies the correct boundary conditions as follows:

(4.9a) T =T =T/, 0<z<oo,

(4.9b) Tr=Co,  0<az<s(l),

(4.10) Tr(0,t) = 1, Tr(x,0) =1 — fi(x), Tr(x,00) = 1,
(4.11) Tr(s(t),t) = Ck,

(4.12a) TS =~T2 ., 0<z< oo,

(4.12Db) T9 = (CY%, s(t) < & < o0,

(4.13) To(0,t) = fo(t),  T9(x,0) =0,

(4.14) T9(s(t),t) = Ci,

(4.15) T (s(t),t) — TE(s(t), ) — % = C;—S

(4.16) s(0) = 0.

The new quantities 77 and 79 are simply C% and C% extended to the full semi-
infinite range. The unknowns f% and f? are fictitious initial and boundary conditions
introduced to facilitate the solution of the problem.

The first step in the solution of our problem is to integrate (4.9a) with respect
to t. Doing so, we see that we need a condition at some point in ¢. Thus, we use our
far-field time condition in (4.10) to yield

(4.17) Tr =T +(1=T7),  0<z < oco.
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Now, if we write 7" = 1 — e=tT%, (4.17) and (4.10) become

(4.18a) T = ~T%, 0< < oo,

(4.18b) Tu(0,t) =0, Tu(z,0) = fi(x).
The solution of (4.18a) and (4.18b) is

10 tan= o [ el [ ] [

so we have

Next we solve for T9. Using (4.13), we may integrate equation (4.12a) once with
respect to ¢ to obtain the following:

(4.20) Tr(a,t)=1-

(4.21) T = ~TE,.
Solving (4.21) subject to (4.13) yields

fo(z) x?

=i | e [ o

Now we may substitute (4.20) and (4.22) into (4.11), (4.14), and (4.15) (omitting
the dependence of s on t) to yield the following:

(423)  1- 2;%7/000 fi(2) {exp [-%} — exp [_%]} dz = C.,

(4.22) T9(x,t)

(4.24) W_/ - (Zz)l/z exp [-%} dz = C,,
2r/ t—zw[l 27(;2‘_2)]“1)[_%]@
e RO (TR =
(4.25) —<s+z)exp[_%”czz_%:§
In addition, we need condition (4.16):
(4.26) s(0) = 0.

We now seek asymptotic solutions to equations (4.23)—(4.26) for small and large
t. These will give expressions for s, f*, and f! that we may use to constuct C'°9 and

cor.
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5. Small-time asymptotics. We note that for small ¢ the dominant contribu-
tion to the integral in (4.23) is from z near s and hence near 0. Thus, we make the
following assumptions about the functional forms of our unknown quantities:

(5.1) fite) ~ fo, =00 fot)~f3, t—0.

Making these substitutions into equations (4.23)-(4.25), we have the following:

(5.2) 1— fie=terf (28W) =C.,

(5.3) L erfe (28%) =C.,

foe=t — f¢ 52 Ce  a$

Using (4.26), we now postulate that for small ¢, s(t) ~ 2sotP,/, where p > 0.
From (5.4), we can see that if p > 3/2, the second term on the left-hand side dominates;
if 0 < p < 1/2, the right-hand side dominates. Therefore, solutions of (5.4) exist for
the region 1/2 < p < 3/2.

If 1/2 < p < 3/2, then (5.2) becomes Cs = 1 to leading order in ¢, which we
consider to be a vacuous limiting case. Hence, we conclude that p = 1/2, in which
case (5.2) becomes

(5-5) fo = erf sg ’
(5.3) becomes
C.
b
(5.6) 7 erfcsy’
and (5.4) becomes
(5.7) L 15 e—sh = 250

3

Tyt
Using (5.5) and (5.6) in (5.7), we have the following:

(5.8) e‘sg(erfc so — Cy) = asor/merfc sg erf sg.

Figure 1 shows a graph of the right-hand side and the left-hand side of (5.8). Note
that as we increase a or C., the value of sy at the intersection point (i.e., our velocity
coefficient) decreases. This is perfectly consistent with our physical intuition of the
problem in this regime, where the solution behaves in a Fickian way. As a increases,
the difference in the flux needed to move the front a preset distance increases, so we
would expect the speed to slow. As C. increases, the value of the concentration at
which the transition takes place increases, therefore slowing the speed of its advance.
This slowing takes place even in the limit Cx — 1, where sg — 0. This is perfectly
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0.4t

0.2r

S0

0.3 57 2 2.5
left-hand side

F1G. 1. Graphs of equation (5.8). Dark lines: Cx = 1/4, a = 1. Light lines: Cx =1/2, a = 2.

consistent with our argument earlier, since in that case 1/2 < p < 3/2. Note also that
there is a unique positive solution sg of (5.8) for all a > 0 and 0 < C\ < 1.
We may now complete our representations for small ¢:

(5.9) s(t) ~ 2sov/yt, t—0; e‘sg(erfc so — Cy) = aso\/merfe sg erf sg.

Using (5.6), we may conclude immediately from (4.22) that

C. x
Nl 09(x,t) ~ ——erfc | — = [ .

(5.10) C%(z,1) P erc(QW), =0
Using (4.7a), we have the following:

C. x

Og ~— -
(5.11) oV9(x, 1) orfe 50 erfc (2\/%) , t—0
Using (5.5), we see from (4.20) that
1-C x

5.12 Cor(z,t)y ~1— —terf 0.
(5.12) R e = B

Using (5.12) in (4.5b), we have that

etglr — = C* T L ex _x_z 4+ 1— l‘_z erfe L —l—terf L
T erf sg oL P At 2y 2Vt 21

(5.13) + f(x),

where we use f(x) to satisfy our boundary condition (4.7b). Our final expression is

0r (2, 1) (A =Ciet 4 22N 2 e
7o erf sg v v “xp 4t 27 ere 23/t

(5.14) (it —1)erf (fw)] tet, z—0.
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Note that in (5.10)—(5.12) and (5.14) the asymptotic variable for the expansion is
the independent variable for the fictitious boundary condition. Hence, in (5.12) and
(5.14), since fi(x) does not depend on ¢, this is a small # asymptotic expansion good
for all . This statement is true, provided that the dominant contribution to (4.23)
for small  comes from z small. This occurs as long as fi(z)e—ZQ, which is the general
behavior of the integrand in (4.23) for small #, remains bounded for large z.

Figure 2 shows graphs of our concentration results (5.10) and (5.12) for a cer-
tain set of parameters (which satisfies (4.1)) and different time values. The jump in
the graphs of the different equations occurs at s(¢) and is due to the fact that the
expansions used are valid only to leading order in ¢ in each region.

Figure 3 shows graphs of our stress results (5.11) and (5.14) for the same param-
eters and times. One thing to note is that the stress at the boundary is beginning to
decay. This trend will become more pronounced as the experiment progresses.

6. Large-time asymptotics. Next we look at the solution for ¢ — oco. We
begin by examining the last two terms of (4.25). For any s(¢) not proportional to ¢,
one of these terms will be growing for large . We expect our concentrations and their
derivatives to be bounded for large ¢, so this large term would have nothing to balance
it. Therefore, we conclude that s(t) ~ 2s..t,/5 for large .

This means that for large ¢ our error functions from the previous section, which
we derived by assuming that fi and f® were constant, will die exponentially. In
addition, we see that for s(t) o ¢ the dominant contribution to the integrals in (4.23)-
(4.25) comes from the values of f# and f* for large values of « and ¢. Hence, a naive
assumption that f? behaves like a constant for large ¢ will be incorrect since it will
once again lead to decaying error functions. Therefore, we see that f and f? must
become unbounded for large values of ¢ and x.

Since the error functions die exponentially, if we assume that fi and f? diverge
as polynomial functions of their respective variables, the exponential decay will swamp

X

0 0.1 0.2 0.3 0.4 0.5

Fic. 2. Concentration profiles: a = 0.5, Cyx = 0.15, v = 1. In decreasing order of darkness:
t = 0.001, 0.01, 0.1.
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o0 1&\

0.8}
0.6t
0.4¢

0.2

X

0 0.1 0.2 0.3 0.4 0.5

Fi1G. 3. Stress profiles: a = 0.5, Cyx = 0.15, v = 1. In decreasing order of darkness: t = 0.001,
0.01, 0.1.

that divergence. Therefore, we need a growing exponential term in f* and f®. Thus,
we assume the following form for fb:

(6.1) fo(t) ~ fheAvt, t — co.

The form of (6.1) was chosen because it is the most tractable analytically. However,
other forms that would yield different representations for our functions are possible.
Therefore, once we have chosen this form for f2(¢) and an analogous form for fi(z),
our analysis of the problem at hand is essentially over and the remainder of the work
s pure asymptotics.

Using (6.1) in (4.22), we have

To(x,t) ~ %e“‘it [exp (A—ﬁ) erfec (2% + Abﬁ)
(6.2) +exp (-A—ﬁ) erfe (2% - Abﬁ)] .

Now, asymptotically expanding (6.2) for large ¢ (using our assumption for s(¢)) and
substituting the result in (4.24), we have

S 1 2 2 _ s erfc| (800 — =
E) {m%(—sww + exp[(Af — 24psco )t] erfe (s Ab)ﬁ]} =

from which we have
(6.3) bo=C., Ay =250

Special care must also be taken with 77. Once again, our error functions from the
previous section will decay as ¢ — oco. Therefore, we expect fi(z) to be exponentially
large as @ — oo:

fi(z) ~ fioeAic  x — oo; A; >0,



WEAKLY DIFFUSIVE NON-FICKIAN SYSTEMS 1051

and (4.20) becomes the following:

)

P expl( a2y — 1)

T (x,t) ~ 1 —

” v R W

Upon substitution of (6.4) and our expression for s(t), the leading orders of (4.23)
become

)

P expl(a2y — 1] {24t exte[ (500 + Ary/TIVI]
—e st erfe[(se0 — Al\/’?)\/ﬂ} =1-0s,

from which we have

2
(6.5) P— +ﬁ8 t o= 1-cC.

Now we must solve for s by substituting our new results into (4.25). Before
proceeding, we see that the only terms in the derivatives of (6.2) and (6.4) that are
not exponentially decaying for s(t) o ¢ are the derivatives of the exponentials e—4s®
and e4:v. Keeping that argument in mind, we have the following for (4.25):

—(’;*—;;exp (A% i{/b_s)erfc<2\/_ Ab\f)
(6.6) —I—Mexp[(flgfy—l)t—l—flis]erfc( NG A\/_) %

Substituting our expressions for A;, Ay, and s(¢) and expanding for large ¢, we have

_20*500 n (Cs = 1) (500 — V5% + 1) _ 2aseo n Cs
VY VY VI 250007

Rearranging terms, we have that s is one of

65) C1[1-20a—3C. % (1 C)VT—AC: — 4Ca| "
' et =5 2(1+ a)(C- + a)

(6.7)

Since a > 0 by (4.1), the requirement that

1

(6.9) Ch < prip]

guarantees that s.ct+ are real.

Next we check the stability of our solutions to see which of s.+ corresponds to
the stable front. Thus, we introduce an o(1) perturbation d(¢) > € of s(¢) into (4.15),
which yields (to leading order in ¢)

TE(s(t),t) = TH(s(t),t) + O[THx(s(t), 1) — The(s(t), t)] = % + C;_S + g (C;_S _ %) .
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Using (4.11), (4.15), (4.17), (4.21), and our expression for s(t), we have

%[Ttg(s(t),t) - T (s@), )+ 1-C] = 7 J (2&500 — G ) .

Using the total derivative of (3.5) with respect to x, we have

%(_5[Tx(8(t),t)]s F1-C) = fmﬁlz%;i%:@).

Using (4.15) and our expression for s(t), we have

§(dask — Cy)

)
455,

(6.10) (1 =20, — 4a5%o) =

Since the other quantities are always positive, the criterion for stability is that the ratio
of the two parenthesized quantities is negative. This will make d(¢) decay exponentially
as t — oo.

The parenthesized quantity on the left is zero when

Lo
T 40, T 4C.

, where (Cx — 1)A2 4+ 2(1 — 3Cy + 2CHA +5C, —8CZ —1 =0.

a

However, the discriminant of the quadratic is negative, so the parenthesized quantity
on the left is always of the same sign (namely positive). The parenthesized quantity
on the right is always negative for s.,_, and it is positive for soo4 when

- _ 2 2
(6.11) . < 1= (142a—2va®+a) ’
41+ a)

which for a > 0 is stronger than (6.9). Thus, we have our compatibility condition
(4.1).

Figure 4 shows our two compatibility conditions as a function of a. Note that
as ¢ — oo, condition (6.11) approaches condition (6.9). We also note that as a — 0
or a — oo, the range of validity for our solution is very thin. As a — oo, we see
that the second term on the left-hand side of (4.8) becomes negligible. Therefore, we
would be left with a standard Stefan condition where the front would move with speed
proportional to t=1/2. As a — 0, we see that (4.8) would allow solutions with fronts
where s grows as { — 0.

We may now complete our representations for large ¢:

(6.12a) s(t) ~ 2500t/ L= 00,

(6.12b) o [1=2Ca—3C — (1= C.)yT-4C, —4C.a 12
. oo — 9 2(1‘1‘@)(0* _|_a) .

Using (6.3) in (6.2), we immediately have

Cletsaot 2500 x
0g ~ /> =
CY9(z, 1) 5 [exp ( N ) erfc (2\/% + 2500\/1?)

(6.13) T exp (-25%) erfc (2%—25%%)], t = oo,
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c. 0.25\

0.05
a
0.5 1 1.5 2
F1G. 4. Graphs of equations (6.9) and (6.11).
and from (4.7a) we have
Cetst [ (25001‘) ( x )
o%(x,t) ~ exp erfc | —— + 2500Vt
(&) 2 VI 2yt
28002 x
6.14 + exp (——) erfc (— — 2500\/1?)] , t—o00.
(014 Vel 2yt
Using (6.5) in (6.4), we have
2
T 900 (o) 1
(6.15) A= PtV AL
Nal

*

COr(z,t) ~ 1 — -

(0.10) [ermete

exp [(AZy — 1)(] x

- AZ\/'W) — e~ 4% erfe (

X

2/t

z

— — A/, — 00.
s~ A)] e
Now we continue by solving for 69" for large t. When taking the derivative of (6.16),
we see that the dominant term is the following:

exp[(A?y — 1)t]edi erfc (—QQEW — Ai\/ﬁ) .

We may now take the error function to be approximately equal to 2 and substitute
into (4.5b) to obtain the following:
(6.18)

oor (l‘,t) ~ —

(1 - C)(AFy = 1)

1 or o, _

2(1 = CY)seo

Seo s2+1

exp | — (500 — V5% + 1) (% - 250015)] + fla)e-t,
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o 1
0.8}
0.6}
0.4}
0.2}
N
0 5 10 15 20 25 30 ‘

Fic. 5. Concentration profiles: a = 0.5, Cy = 0.15, v = 1. In decreasing order of darkness:
t =6, 24, 96.

where f(z) is once again chosen to satisfy our boundary condition (4.7b). This yields

507 (2, 1) ~ Mexp [—(soo — V5% + 1) (i _ 25001?)]
s, 4+ 1 — 50 VY
(6.19) + C*—M exp( i —t) , T — 00,
Vs + 1 — seo 2500/Y

Figure 5 shows graphs of our concentration results (6.13) and (6.16) for the same
set of parameters as before. Since (6.16) satisfies our boundary condition C'(0,¢) = 1,
we have used it as the plot for the entire domain 0 < # < s(¢). The only difference
between (6.16) and the more reliable (5.12) to leading orders as # — 0 and ¢ — oo is
the coefficient of e—*; hence for the purposes of graphical interpretation the two are
indistinguishable. Note that as ¢ — oo, the gap between our solutions narrows.

More important, although not as sharp as profiles generated by other forms of our
model [10], [18], our front is still sharper than those found in systems modeled by a
simple constant-coefficient Fickian model. A graph of such a profile is shown in Fig. 6.
Our profile, where the concentration is almost identically 1 behind the front before
plunging sharply downward at the front, has been seen experimentally in polymer-
penetrant systems [7]. Therefore, our model replicates two important features of such
systems: constant front speed and sharp interfaces.

Figure 7 shows graphs of our stress results (6.14) and (6.19) for the same pa-
rameters and times. An argument similar to the one outlined earlier can be made
for plotting (6.19) for # — 0 rather than (5.14). As expected, our stress now has a
maximum slightly behind the front (the position of which can be ascertained from the
gap). In addition, in the region where the concentration of the penetrant is nearly 1,
the stress in the polymer is nearly 0; that is, the polymer is fully relaxed.
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0 S 10 15 20 25 30

Fi1a. 6. Constant-coefficient Fickian error-function profile.

o0

0.175¢}
0.15
0.125
0.1
0.075
0.05

0.025

0 S 10 15 20 25 30

Fic. 7. Stress profiles: a = 0.5, Cyx = 0.15, v = 1. In decreasing order of darkness: t = 6, 24,
96.

7. Remarks. The results in this paper clearly demonstrate that non-Fickian
behavior occurs in many polymer-penetrant systems. We have constructed asymptotic
results where the diffusion coefficient 1s small, in which case the addition of a non-
negligible viscoelastic stress term to the chemical potential introduces memory effects
that greatly affect the character of the solution. In addition, the moving boundary-
value problem becomes much more difficult mathematically, since 1t no longer yields
to simplistic similarity-variable techniques. Therefore, more sophisticated methods,
such as that of Boley, must be used.
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The system of integrodifferential equations that results cannot be solved in closed
form; thus, an asymptotic solution is expedient. For any a > 0, a solution that
for small time moved with speed proportional to t=1/2  as expected from a diffusive
system, was found. This is indicative of the fact that as ¢ — 0, the effect of memory
is not yet important, since our definition of the stress implies that the time history
begins at { = 0.

However, as time progresses, the effects of memory become more and more im-
portant. This memory effect, which makes its presence felt in the second term on
the left-hand side of (4.8), eventually forces the front to move with constant speed,
a phenomenon not seen in Fickian systems with bounded initial and boundary con-
ditions. In addition, as time grows ever larger, our equations lead to solutions where
an increasing portion of the rubbery polymer is fully saturated, and the width of the
decay to Cx 1s much narrower than in Fickian systems. This behavior successfully
models some of the phenomena seen in polymer-penetrant systems [7].

Obviously, (4.1) is a restrictive class of parameters. However, this does not mean
that solutions do not exist when C\ does not satisfy (6.11). What can we say about
such systems when a is positive? Well, our discussion in the first paragraph of §6
still holds; that is, the front must move with constant speed to satisfy the long-time
asymptotics of (4.25). However, our solution (6.12) is based on the assumption that
the next order in the asymptotic expansion of s(t) as ¢t — oo is O(1). If the next term
is larger than O(1), then our expansions for 79 and 7" would diverge. For instance, if
s(t) ~ seot +O(t1/2), then one of the bracketed terms in (6.13) would be exponentially
growing.

Therefore, it is possible that when C. does not satisfy (6.11), solutions still ex-
ist; however, two facets of our analysis must change. First, we must allow for the
possibility that there is a correction to s(¢) that is greater than O(1). To obtain
such solutions, we must abandon such simplistic expressions as (6.1) for our fictitious
boundary conditions and incorporate such functional forms as the product of polyno-
mial and growing exponential terms. However, to leading order the front would still
move with constant speed by our discussion in the beginning of § 6.

By properly postulating a flux (2.1a), using our physical and mathematical knowl-
edge and intuition about polymer-penetrant systems, we were able to obtain results
that replicate several salient features of such systems. By reducing the size of the diffu-
sion coefficient, thereby emphasizing the effects of the nonlinear viscoelastic term, we
have obtained fronts that move with constant speed. These fronts, which are sharper
than those found in ordinary diffusive systems, have been found experimentally to be
characteristic of certain polymer-penetrant systems.

8. Nomenclature.

8.1. Variables and parameters.

Units are listed in terms of length (L), mass (M), moles (N), or time (7). If the
same letter appears both with and without tildes, the letter with a tilde has dimensions
but the letter without a tilde is nondimensionalized. The equation number where a
particular quantity first appears is listed, if applicable.

a: coefficient in flux-front speed relationship (3.3), units N/L3.

A: constant, variously defined.
C~'(~, t): concentration of penetrant or diluent at position - and time ¢, units N/L3.
D(C’): binary diffusion coefficient for system, units L2/T.
E(C~') coefficient preceding the stress term in the modified diffusion equation, units

NT/M (2.1a).
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f(+): arbitrary function, variously defined.
: flux at position - and time ¢, units N/L2T.
: variable exponent for small-time asymptotics.
. position of secondary front, defined as C~'(§(t~),f) = C,, units L (3.1).
: time from imposition of external concentration, units 7' (2.1b).
: imbedding of C' from one region to the fully semi-infinite region (4.9a).
: distance from boundary, units L (2.1a).
: dummy integration variable.
: the integers.
: inverse of the relaxation time, units 7-1 (2.1b).
: nondimensional parameter, value vE/ Dy (4.5a).
: perturbation expansion parameter, value 8,/3, (4.2a).
. coefficient of concentration in stress evolution equation, units M L2/NT3
(2.1b).

v: coefficient of C; in stress evolution equation, units M L2/NT? (2.1b).

&(%,1): stress in polymer at position # and time ¢, units M/LT?2 (2.1b).

it
—_
Iy THU

[V
S
N IS - 1 % o

=
(@}

[ o =2

2. Other notation.
b: as a subscript or superscript, used to indicate a quantity at x = 0 (4.13).
¢: as a subscript, used to indicate the characteristic value of a quantity (2.5).
g: as a subscript or superscript, used to indicate the glassy state (2.3).
i: as a subscript or superscript, used to indicate a quantity at ¢ = 0 (4.10).
j € Z: as a subscript or superscript, used to indicate a term in an expansion, in
either ¢, z, or e.
7: as a subscript or superscript, used to indicate the rubbery state (2.3).
’: used to indicate a dummy integration variable (2.1b).
": used to indicate differentiation with respect to ¢ (3.7).
*: as a subscript, used to indicate at the transition value between the glassy
and rubbery states (2.3).
oo: as subscript, used to indicate a term in an expansion in t or z.
[]5: jump across the front §, defined as -9(3+(¢),1) — (5= (¢),1) (3.3).
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