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CONSTANT FRONT SPEED IN WEAKLY DIFFUSIVE
NON�FICKIAN SYSTEMS�

DAVID A� EDWARDSy

Abstract� In certain polymer�penetrant systems� the e�ects of Fickian di�usion are dominated
by nonlinear viscoelastic behavior� Consequently� such systems often exhibit concentration fronts
unlike those seen in classical Fickian systems� These fronts not only are sharper than in standard
systems but also propagate at constant speed� The mathematical model presented is a moving
boundary�value problem� where the boundary separates the polymer into two distinct states� glassy
and rubbery� where di�erent physical processes dominate� The moving boundary condition that
results is not solvable by similarity solutions but can be solved by integral equation techniques� In
the case under consideration� namely� one where the standard Fickian di�usion coe�cient is small�
asymptotic solutions where a comparatively sharp front moves with constant speed are obtained�
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�� Introduction� As engineers continue to �nd new uses for polymers and other
synthetic materials �������� entire industries have been revolutionized and new ones
created� Suddenly� materials science has been thrust to the forefront of mathemat�
ical applications as engineers and mathematicians alike scramble to understand the
dynamics of these new materials� Unfortunately� neither group has come to a full
understanding of the exact physical mechanisms involved in such systems� However�
all agree that the unusual phenomena these new materials exhibit indicate that the
standard Fickian 	ux 
J � �D� 
C
r 
C� where D� 
C
 is the second�order di�usion tensor
and 
C is the concentration� is not general enough to model such systems correctly�
In addition� there is a growing consensus that some sort of viscoelastic stress plays
a major role in the dynamics of many of these materials� sharing dominance with or
robbing control from standard Fickian di�usion�

Polymer�penetrant systems are particularly intriguing since much of the observed
behavior cannot be explained by a purely Fickian di�usion model� For instance� un�
less pathological conditions are met� a Fickian front always propagates with speed
proportional to 
t����� However� in so�called case II di�usion in polymers� concentra�
tion fronts move with constant speed ���� ���� These fronts are usually sharper than
those of the Fickian di�usion model� However� there is no discontinuity in 
C as can
be found in other� more standard chemical systems ����

The type of polymers that we study are characterized by two distinct phases�
glassy and rubbery� In the glassy state� the polymer has a �nite relaxation time

associated with the length of the polymer in relation to the entanglement network�
This nonlocal e�ect implies that there will be a stress related to the �memory� of the
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polymer with respect to its concentration history� In the rubbery state� the polymer
swells� making the relaxation time almost instantaneous� Hence� the �memory� of the
polymer in the rubbery state is very faint ����

To model this unusual behavior� Edwards and Cohen ���� have proposed a much
more general model for the 	ux� which can accomodate many terms� Each term in the
expansion represents a 	ux contribution from a di�erent source� including such e�ects
as molecular di�usion and viscoelasticity� Furthermore� each term can be derived
directly from an augmented chemical potential� This form for the 	ux is general
enough to model accurately many more types of anomalous di�usive behavior than
simply those associated with polymer�penetrant systems�

In ��������� the authors present specialized forms of the general model to examine
several di�erent cases of viscoeleastic di�usion in polymer�penetrant systems� In this
paper we will do likewise� We expect to �nd this unusual behavior in systems where
the e�ects of Fickian di�usion have been swamped by some other e�ect� Therefore� we
will consider the e�ect of a small di�usion coe�cient in a polymer�penetrant system�

In x � we enumerate the equations in the general model except for the conditions
at the moving boundary� which we describe in x �� In x � we specialize our general
model to the case that we wish to consider� Small� and large�time asymptotics are
performed in xx � and ��

�� Governing equations� To have faith in our model� we need to replicate
several important properties of polymer�penetrant systems that are generally found in
experiments� First� we expect there to be only two dominant processes in our system�
molecular di�usion and viscoelasticity� Therefore� we expect our 	ux expansion to
have two terms instead of the one term modeled by Fickian di�usion� In the glassy
state� the polymer has a �nite relaxation time ����� which indicates the presence of a
viscoelastic memory term in our 	ux� The polymer is a�ected by past values of the
concentration and its time derivative ���� ����� �����

We wish to reduce our problem to one dimension� so we write the 	ux as

����a
 
J � �D� 
C
 
C�x �E� 
C

��x�

where

����b
 
� �

Z �t

�

�� 
C�
x� 
t�
 � � 
C�t�
x� 
t�
� exp

�
�
Z �t

�t�
�� 
C�
x� z

 dz

�
d
t��

Here �� 
C
 is the inverse of the relaxation time for the polymer� E� 
C
 is a stress
coe�cient term� and � and � are constants� Further justi�cation for an expansion
such as ����
 may be found in Edwards and Cohen ����� We also note that 
� plays
the role of the viscoelastic memory term and can be considered analogous to a stress
term� In addition� the de�nition of 
� in ����b
 implies that

����
 
��
x� �
 � ��

The term �� 
C
 is the inverse of the relaxation time� which corresponds roughly
to the time needed for one part of the polymer to respond to changes in neighboring
parts� In the polymer�penetrant systems in which we are interested� �� 
C
 changes
greatly as the polymer goes from the glassy state to the rubbery state� Therefore� its
dependence on 
C will be important� although the di�erences in �� 
C
 within phases
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are negligible when compared with the di�erences between phases� Hence� we model
�� 
C
 by its average in each phase� yielding the following functional form�

����
 �� 
C
 �

�
�g � � � 
C � 
C� �glass
�
�r � 
C� � 
C � 
Cc �rubber
�

where 
C� is the concentration at which the rubber�glass transition occurs� Subscripts
and superscripts r refer to the rubbery region� subscripts and superscripts g refer
to the glassy region� This choice for �� 
C
 also has the advantage that it makes the
problem more tractable analytically�

It has been shown experimentally that the qualitative e�ects of the variance of
E� 
C
 on the concentration are essentially negligible� Since we are eventually going
to consider the case of a weakly di�usive system� we also conclude that variations
in D� 
C
 will not contribute qualitatively to the solution� Thus� we approximate
E� 
C
 and D� 
C
 by their averages over the range of concentration and treat them
as constants� which we denote by E and D� More discussion of various physically
appropriate forms for D� 
C
 and E� 
C
 can be found in Cohen and White �����

Substituting ����a
 and our expressions for D� 
C
 and E� 
C
 into the standard
di�usion operator 
C�t � � 
J�x� we have

����a
 
C�t � D 
C�x�x � E
��x�x�

We also note that equation ����b
 is the solution to the following equation�

����b
 
��t � �� 
C

� � � 
C � � 
C�t�

We wish to model the penetration of solute imposed at a concentration 
Cc on the
boundary of an initially �dry� and unstressed semi�in�nite polymer� Mathematically�
we wish to solve equations ����
 on the interval 
x � � subject to ����
 and the following
boundary and initial conditions�

����
 
C��� 
t
 � 
Cc� 
C�
x� �
 � ��

In addition� on physical grounds we expect that as the experiment progresses� the
polymer will become totally saturated� The mathematical condition� which we will
impose only when warranted� is

����
 
C�
x��
 � 
Cc�

This condition� which is naturally satis�ed by the full problem due to its parabolic
nature� is needed when we attempt to use perturbation techniques to solve the com�
plicated moving boundary�value problem�

We wish to incorporate e�ects of both the glassy and the rubbery phases in our
nondimensionalization� We normalize 
x by our di�usive length scale in the glassy
region� since we wish to track front motion on a macroscopic level and the di�usive
length scale in the glassy region is the longer length scale� However� it has been seen in
experiments and numerical simulations ���� that these fronts move quickly� therefore�
we normalize 
t by the relaxation time in the rubbery region� which is the faster time
scale� We normalize 
C by 
Cc and 
� by � 
Cc� Summarizing� we have

����
 x � 
x

r
�g
D
� t � 
t�r � C�x� t
 �


C�
x� 
t


Cc

� ��x� t
 �

��
x� 
t


� 
Cc

� C� �

C�

Cc

�
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Then equations ����
 and ����
�����
 reduce to

����a
 Ct �
�g

�r
Cxx �

�E�g

D�r
�xx�

����b
 �t �
��C


�r
� �

�

��r
C � Ct�

����
 C��� t
 � �� C�x� �
 � �� ��x� �
 � ��

�����
 C�x��
 � ��

Since ��C
 is constant on either side of the threshold level C � C�� we may
di�erentiate and combine equations ����a
 and ����b
 to yield

�����
 Ctt �
�g
�r

�
� �

�E

D

�
Cxxt � ��C


�r
Ct �

�g
��r

�
��C
 �

�E

D

�
Cxx�

�� Front conditions� Due to our choice of a piecewise�constant function to
model ��C
� our problem will involve matching the solutions in the two regions where
� � �g and � � �r � Thus� it is necessary to impose conditions at the moving boundary

s�
t
 between the two regions� First� it is clear that since C� � �� our front has an
initial condition 
s��
 � ��

In a moving boundary�value problem� several conditions need to be imposed at
the moving front 
x � 
s�
t
� In polymer�penetrant systems� one does not see a jump in
concentration but rather a sharp rise at a moving front ���� However� the front is still
relatively wide when compared with molecular length scales� so the continuum model
we use is still valid� Since there is no jump in concentration� 
C should be continuous
at the front at the speci�ed transition value 
C��

����
 
Cr�
s�
t
� 
t
 � 
C� � 
Cg�
s�
t
� 
t
�

We also need a condition for the stress at the front� Although some models
incorporate discontinuities in the stress at the front ����� in our model we require that
the stress be continuous�

����
 
�r�
s�
t
� 
t
 � 
�g�
s�
t
� 
t
�

This choice is consistent with ����
 above� which we derived by using the reasoning
that although our relevant dependent variables may change quickly near the front�
they are still continuous�

Last� we need a relationship between the 	ux 
J at the front and the speed at
which the front travels� Since the polymer undergoes a phase transition from a glassy
to a rubbery phase� we use the 	ux condition from the Stefan problem ���� which is

����
 � 
J ��s � �
a
d
s

d
t
�

where ����s � �g�
s��
t
� 
t
 � �r�
s��
t
� 
t
�
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In a standard problem� the constant 
a is related to the latent heat of melting of
the substance� However� here we are assuming that a �phase transition� takes place
in the polymer as we go from the glassy to the rubbery state� Experimentally� this has
been shown to be related to a stretching of the polymer� which reduces the amount
of stress quickly� although not discontinuously� In fact� an experiment where 
a can
be measured directly can be designed ����� ����� The 	ux used by the polymer in this
stretching is directly analogous to the energy used in melting in a standard two�phase
heat conduction problem� Using ����a
 in ����
� we have the following�

����
 �D 
C�x � E
��x��s � 
a
d
s

d
t
�

Since the stretching of the polymer reduces the stress� we expect that as the system
reaches a steady state� we should see the stress increasing in the glassy polymer�
reaching a continuous maximum in the rubbery polymer near the concentration front
and then decaying quickly to � in the fully relaxed rubbery polymer� This behavior
has been seen in other numerical simulations of the equations of Thomas and Windle
�����

Using our dimensionless variables ����
 in ����
� ����
� and ����
 and the same
length scale for 
s as for 
x� we have

����
 Cr�s�t
� t
 � C� � Cg�s�t
� t
�

����
 �r�s�t
� t
 � �g�s�t
� t
�

����
 �DCx � �E�x�s �
aD�r
�g

�s�

where the dot indicates di�erentiation with respect to t and a � 
a� 
Cc�
To simplify our analysis� we now wish to remove �x from ����
� In ���� Edwards

and Cohen show how ����
 may be rewritten as

����
 �D � �E
�Cx�s � �E

�
�g
�r
� �

�
��s�t
� t


�s
�

aD�r
�g

�s

by using ����b
 to solve for � and then using our front conditions�
Equation ����
 now replaces ����
 as the last equation governing our system�

Although � still remains in ����
� in general practice it is easier to compute � than �x�
Experimentally it has been shown that polymers have a near�instantaneous relaxation
time in the rubbery state� while in the glassy state these substances are characterized
by �nite relaxation times� Hence� we assume that �g��r � 	� where � � 	 � ��
We now wish to solve these equations by using perturbation expansions in the small
parameter 	 to show that in a certain limit these equations lead to constant front
speed�

�� The weakly di�usive case� In the weakly di�usive case� we assume that
the di�usion coe�cient is always small� i�e�� D � D�	� For reasons that will become
clear later� we wish to restrict the parameter range that we consider to the following�

����
 C� � �� �� � �a� �
p
a� � a
�

��� � a

� a � ��
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The second restriction may seem obvious since we have considered a to be analogous
to a latent heat� although there are polymer�penetrant systems where this is not the
case ����� �����

Substituting our parameters into �����
 and ����b
� we see that for C � C� we
have

����a
 Cr
tt �

	D� � �E

D�

Cr
xxt � Cr

t �
	

D�

�
D� �

�E

�g

�
Cr
xx�

����b
 �rt � �r �
�	

��g
Cr � Cr

t �

while for C � C� we have the following equations�

����a
 Cg
tt �

	D� � �E

D�

Cg
xxt � 	Cg

t �
	

D�

�
D�	 �

�E

�g

�
Cg
xx�

����b
 �gt � 	�g �
�	

��g
Cg � Cg

t �

In addition� ����
 becomes

����
 �D�	 � �E
�Cx�s � �E�	� �

��s�t
� t


�s
� aD� �s�

We now construct series for C and � in 	 by assuming that C � C� � o��
 and
� � �� � o��
� Doing so� we see that� to leading order� ����
 and ����
 become

����a
 C�r
tt � 
C�r

xxt �C�r
t �

����b
 ��rt � ��r � C�r
t �

����a
 C�g
tt � 
C�g

xxt�

����b
 ��gt � C�g
t �

where 
 � �E�D��
Solving ����b
 subject to ����
� we see that

����a
 ��g � C�g�

from which ����
 implies that

����b
 ��s�t
� t
 � C��

Then ����
 becomes� to leading order�

����
 �C�
x�s � C�

�s
�

a �s



�
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The form of ����
 immediately indicates that the commonly used method of sim�
ilarity transformations will not work for this problem� We will have to solve the full
partial di�erential equations and then match these solutions at the moving boundary�
To do so� we adopt the integral method used by Boley ����� In his paper� he ex�
tended the equations that held on either side of the front to the entire domain� Then
by introducing �ctitious boundary conditions that held in the extended part of each
equation�s domain� he was able to construct solutions to the moving boundary�value
problem� Following that method� we introduce two new quantities� T g and T r� which
extend each of ����a
 and ����a
 to the full semi�in�nite region� We then ensure that
each of these solutions satis�es the correct boundary conditions as follows�

����a
 T r
tt � 
T r

xxt � T r
t � � � x ���

����b
 T r � C�r� � � x � s�t
�

�����
 T r��� t
 � �� T r�x� �
 � �� f i�x
� T r�x��
 � ��

�����
 T r�s�t
� t
 � C��

�����a
 T g
tt � 
T g

xxt� � � x ���

�����b
 T g � C�g� s�t
 � x ���

�����
 T g��� t
 � fb�t
� T g�x� �
 � ��

�����
 T g�s�t
� t
 � C��

�����
 T g
x �s�t
� t
 � T r

x �s�t
� t
 � C�
�s

�
a �s



�

�����
 s��
 � ��

The new quantities T r and T g are simply C�r and C�g extended to the full semi�
in�nite range� The unknowns f i and fb are �ctitious initial and boundary conditions
introduced to facilitate the solution of the problem�

The �rst step in the solution of our problem is to integrate ����a
 with respect
to t� Doing so� we see that we need a condition at some point in t� Thus� we use our
far��eld time condition in �����
 to yield

�����
 T r
t � 
T r

xx � ��� T r
� � � x ���
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Now� if we write T r � �� e�tTu� �����
 and �����
 become

�����a
 Tu
t � 
Tu

xx� � � x ���

�����b
 T u��� t
 � �� Tu�x� �
 � f i�x
�

The solution of �����a
 and �����b
 is

�����
 Tu�x� t
 �
�

�
p
�
t

Z �

�

f i�z


�
exp

�
� �x� z
�

�
t

�
� exp

�
� �x � z
�

�
t

��
dz�

so we have

�����
 T r�x� t
 � �� e�t

�
p
�
t

Z �

�

f i�z


�
exp

�
� �x� z
�

�
t

�
� exp

�
� �x � z
�

�
t

��
dz�

Next we solve for T g � Using �����
� we may integrate equation �����a
 once with
respect to t to obtain the following�

�����
 T g
t � 
T g

xx�

Solving �����
 subject to �����
 yields

�����
 T g�x� t
 �
x

�
p
�


Z t

�

fb�z


�t� z
���
exp

�
� x�

�
�t � z


�
dz�

Now we may substitute �����
 and �����
 into �����
� �����
� and �����
 �omitting
the dependence of s on t
 to yield the following�

�����
 �� e�t

�
p
�
t

Z �

�

f i�z


�
exp

�
� �s � z
�

�
t

�
� exp

�
� �s � z
�

�
t

��
dz � C��

�����

s

�
p
�


Z t

�

fb�z


�t� z
���
exp

�
� s�

�
�t � z


�
dz � C��

�

�
p
�


Z t

�

fb�z


�t� z
���

�
�� s�

�
�t � z


�
exp

�
� s�

�
�t� z


�
dz

� e�t

�
t
p
�
t

Z �

�

f i�z


�
�s� z
 exp

�
� �s � z
�

�
t

�

�����
 � �s � z
 exp

�
� �s � z
�

�
t

��
dz � C�

�s
�

a �s



�

In addition� we need condition �����
�

�����
 s��
 � ��

We now seek asymptotic solutions to equations �����
������
 for small and large
t� These will give expressions for s� fb� and f i that we may use to constuct C�g and
C�r�
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�� Small�time asymptotics� We note that for small t the dominant contribu�
tion to the integral in �����
 is from z near s and hence near �� Thus� we make the
following assumptions about the functional forms of our unknown quantities�

����
 f i�x
 � f i�� x� �� fb�t
 � fb� � t� ��

Making these substitutions into equations �����
������
� we have the following�

����
 �� f i�e
�t erf

�
s

�
p

t

�
� C��

����
 fb� erfc

�
s

�
p

t

�
� C��

����

f i�e

�t � fb�p
�
t

exp

�
� s�

�
t

�
� C�

�s
�

a �s



�

Using �����
� we now postulate that for small t� s�t
 � �s�tp
p

� where p � ��

From ����
� we can see that if p � ���� the second term on the left�hand side dominates�
if � � p � ���� the right�hand side dominates� Therefore� solutions of ����
 exist for
the region ��� � p � ����

If ��� � p � ���� then ����
 becomes C� � � to leading order in t� which we
consider to be a vacuous limiting case� Hence� we conclude that p � ���� in which
case ����
 becomes

����
 f i� �
�� C�
erf s�

�

����
 becomes

����
 fb� �
C�

erfc s�
�

and ����
 becomes

����

f i� � fb�p

�
t
e�s

�

� �
as�p

t
�

Using ����
 and ����
 in ����
� we have the following�

����
 e�s
�

��erfc s� � C�
 � as�
p
� erfc s� erf s��

Figure � shows a graph of the right�hand side and the left�hand side of ����
� Note
that as we increase a or C�� the value of s� at the intersection point �i�e�� our velocity
coe�cient
 decreases� This is perfectly consistent with our physical intuition of the
problem in this regime� where the solution behaves in a Fickian way� As a increases�
the di�erence in the 	ux needed to move the front a preset distance increases� so we
would expect the speed to slow� As C� increases� the value of the concentration at
which the transition takes place increases� therefore slowing the speed of its advance�
This slowing takes place even in the limit C� � �� where s� � �� This is perfectly
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right�hand side

left�hand side

f�s�


s�

Fig� �� Graphs of equation ���
�� Dark lines� C� � 	��� a � 	� Light lines� C� � 	��� a � ��

consistent with our argument earlier� since in that case ��� � p � ���� Note also that
there is a unique positive solution s� of ����
 for all a � � and � � C� � ��

We may now complete our representations for small t�

����
 s�t
 � �s�
p

t� t� �� e�s

�

� �erfc s� �C�
 � as�
p
� erfc s� erf s��

Using ����
� we may conclude immediately from �����
 that

�����
 C�g�x� t
 � C�
erfc s�

erfc

�
x

�
p

t

�
� t� ��

Using ����a
� we have the following�

�����
 ��g�x� t
 � C�
erfc s�

erfc

�
x

�
p

t

�
� t� ��

Using ����
� we see from �����
 that

�����
 C�r�x� t
 � �� ��C�
erf s�

e�t erf

�
x

�
p

t

�
� x� ��

Using �����
 in ����b
� we have that

et��r �
��C�
erf s�

�
x

r
t


�
exp
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� x�

�
t

�
�

�
�� x�

�


�
erfc

�
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�
p

t

�
� t erf

�
x

�
p

t

��
�����
 � f�x
�

where we use f�x
 to satisfy our boundary condition ����b
� Our �nal expression is

��r�x� t
 � �� � C�
e�t

erf s�

�
x

r
t


�
exp

�
� x�

�
t

�
� x�

�

erfc

�
x

�
p

t

�

�����
 ��t � �
 erf

�
x

�
p

t

��
� e�t� x� ��
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Note that in �����
������
 and �����
 the asymptotic variable for the expansion is
the independent variable for the �ctitious boundary condition� Hence� in �����
 and
�����
� since f i�x
 does not depend on t� this is a small x asymptotic expansion good
for all t� This statement is true� provided that the dominant contribution to �����

for small x comes from z small� This occurs as long as f i�z
e�z� � which is the general
behavior of the integrand in �����
 for small x� remains bounded for large z�

Figure � shows graphs of our concentration results �����
 and �����
 for a cer�
tain set of parameters �which satis�es ����

 and di�erent time values� The jump in
the graphs of the di�erent equations occurs at s�t
 and is due to the fact that the
expansions used are valid only to leading order in t in each region�

Figure � shows graphs of our stress results �����
 and �����
 for the same param�
eters and times� One thing to note is that the stress at the boundary is beginning to
decay� This trend will become more pronounced as the experiment progresses�

	� Large�time asymptotics� Next we look at the solution for t � �� We
begin by examining the last two terms of �����
� For any s�t
 not proportional to t�
one of these terms will be growing for large t� We expect our concentrations and their
derivatives to be bounded for large t� so this large term would have nothing to balance
it� Therefore� we conclude that s�t
 � �s�t

p

 for large t�

This means that for large t our error functions from the previous section� which
we derived by assuming that f i and fb were constant� will die exponentially� In
addition� we see that for s�t
 � t the dominant contribution to the integrals in �����
�
�����
 comes from the values of f i and fb for large values of x and t� Hence� a na� ve
assumption that fb behaves like a constant for large t will be incorrect since it will
once again lead to decaying error functions� Therefore� we see that f i and fb must
become unbounded for large values of t and x�

Since the error functions die exponentially� if we assume that f i and fb diverge
as polynomial functions of their respective variables� the exponential decay will swamp

C�

x

Fig� �� Concentration pro�les� a � ���� C� � ��	�� � � 	� In decreasing order of darkness�
t � ����	� ���	� ��	�
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��

x

Fig� �� Stress pro�les� a � ���� C� � ��	�� � � 	� In decreasing order of darkness� t � ����	�
���	� ��	�

that divergence� Therefore� we need a growing exponential term in f i and fb� Thus�
we assume the following form for fb�

����
 fb�t
 � fb�eA
�

b
t� t���

The form of ����
 was chosen because it is the most tractable analytically� However�
other forms that would yield di�erent representations for our functions are possible�
Therefore� once we have chosen this form for fb�t
 and an analogous form for f i�x
�
our analysis of the problem at hand is essentially over and the remainder of the work
is pure asymptotics�

Using ����
 in �����
� we have

T g�x� t
 � fb�
�
eA

�

b
t

�
exp

�
Abxp



�
erfc

�
x

�
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t

� Ab

p
t

�

����
 � exp

�
�Abxp




�
erfc

�
x

�
p

t
�Ab

p
t

��
�

Now� asymptotically expanding ����
 for large t �using our assumption for s�t

 and
substituting the result in �����
� we have

fb�
�

�
�

�s� � Ab

p
�t

exp��s��t
 � exp��A�
b � �Abs�
t� erfc

�
�s� � Ab


p
t
	�

� C��

from which we have

����
 fb� � C�� Ab � �s��

Special care must also be taken with T r� Once again� our error functions from the
previous section will decay as t��� Therefore� we expect f i�x
 to be exponentially
large as x���

f i�x
 � f i�eAix� x��� Ai � ��
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and �����
 becomes the following�

T r�x� t
 � �� f i�
�

exp��A�
i
 � �
t��

����


�
eAix erfc

�
� x

�
p

t
�Ai

p

t

�
� e�Aix erfc

�
x

�
p

t
�Ai

p

t

��
�

Upon substitution of ����
 and our expression for s�t
� the leading orders of �����

become

f i�
�

exp��A�
i 
 � �
t�

n
e�Ais�t

p
� erfc���s� � Ai

p



p
t�

�e��Ais�t
p
� erfc��s� � Ai

p



p
t�
o

� �� C��

from which we have

����
 Ai �
�s� �

p
s�� � �p



� f i� � �� C��

Now we must solve for s� by substituting our new results into �����
� Before
proceeding� we see that the only terms in the derivatives of ����
 and ����
 that are
not exponentially decaying for s�t
 � t are the derivatives of the exponentials e�Abx

and eAix� Keeping that argument in mind� we have the following for �����
�

�C�Ab

�
p



exp

�
A�
bt �

Absp



�
erfc

�
s

�
p

t
� Ab

p
t

�

����
 �
Ai�� �C�


�
exp ��A�

i 
 � �
t � Ais� erfc

�
� s

�
p

t
�Ai

p

t

�
�

a �s



�

C�
�s
�

Substituting our expressions for Ai� Ab� and s�t
 and expanding for large t� we have

����
 ��C�s�p



�
�C� � �
�s� �

p
s�� � �
p



�

�as�p



�
C�

�s�
p


�

Rearranging terms� we have that s� is one of

����
 s�� �
�

�

�
�� �C�a � �C� 	 ��� C�


p
�� �C� � �C�a

��� � a
�C� � a


����
�

Since a � � by ����
� the requirement that

����
 C� � �

��� � a


guarantees that s�� are real�
Next we check the stability of our solutions to see which of s�� corresponds to

the stable front� Thus� we introduce an o��
 perturbation ��t
 
 	 of s�t
 into �����
�
which yields �to leading order in �


T g
x �s�t
� t
 � T r

x �s�t
� t
 � ��T g
xx�s�t
� t
 � T r

xx�s�t
� t
� �
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�s

�
a �s



�

��

�s

�
a �s



� C�

�s

�
�
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Using �����
� �����
� �����
� �����
� and our expression for s�t
� we have

�



�T g

t �s�t
� t
 � T r
t �s�t
� t
 � �� C�� �

��

�
s�

�
�as� � C�

�s�

�
�

Using the total derivative of ����
 with respect to x� we have

�



�� �s�Tx�s�t
� t
�s � �� C�
 �

����as�� �C�

�s��

�

Using �����
 and our expression for s�t
� we have

�����
 ��� � �C� � �as��
 �
����as�� �C�


�s��
�

Since the other quantities are always positive� the criterion for stability is that the ratio
of the two parenthesized quantities is negative� This will make ��t
 decay exponentially
as t���

The parenthesized quantity on the left is zero when

a �
�

�C�
� �� 
�

�C�
� where �C� � �

� � ���� �C� � �C��

 � �C� � �C�� � � � ��

However� the discriminant of the quadratic is negative� so the parenthesized quantity
on the left is always of the same sign �namely positive
� The parenthesized quantity
on the right is always negative for s��� and it is positive for s�� when

�����
 C� � �� �� � �a� �
p
a� � a
�

��� � a

�

which for a � � is stronger than ����
� Thus� we have our compatibility condition
����
�

Figure � shows our two compatibility conditions as a function of a� Note that
as a � �� condition �����
 approaches condition ����
� We also note that as a � �
or a � �� the range of validity for our solution is very thin� As a � �� we see
that the second term on the left�hand side of ����
 becomes negligible� Therefore� we
would be left with a standard Stefan condition where the front would move with speed
proportional to t����� As a � �� we see that ����
 would allow solutions with fronts
where �s grows as t���

We may now complete our representations for large t�

�����a
 s�t
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p
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�

Using ����
 in ����
� we immediately have
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Fig� �� Graphs of equations �
��� and �
�		��

and from ����a
 we have
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Using ����
 in ����
� we have
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Now we continue by solving for ��r for large t� When taking the derivative of �����
�
we see that the dominant term is the following�
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We may now take the error function to be approximately equal to � and substitute
into ����b
 to obtain the following�
�����
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C�

x

Fig� �� Concentration pro�les� a � ���� C� � ��	�� � � 	� In decreasing order of darkness�
t � 
� ��� �
�

where f�x
 is once again chosen to satisfy our boundary condition ����b
� This yields

��r�x� t
 � ����C�
s�p
s�� � �� s�

exp

�
��s� �

p
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�
xp


� �s�t
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�
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�
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Figure � shows graphs of our concentration results �����
 and �����
 for the same
set of parameters as before� Since �����
 satis�es our boundary condition C��� t
 � ��
we have used it as the plot for the entire domain � � x � s�t
� The only di�erence
between �����
 and the more reliable �����
 to leading orders as x� � and t�� is
the coe�cient of e�t� hence for the purposes of graphical interpretation the two are
indistinguishable� Note that as t��� the gap between our solutions narrows�

More important� although not as sharp as pro�les generated by other forms of our
model ����� ����� our front is still sharper than those found in systems modeled by a
simple constant�coe�cient Fickian model� A graph of such a pro�le is shown in Fig� ��
Our pro�le� where the concentration is almost identically � behind the front before
plunging sharply downward at the front� has been seen experimentally in polymer�
penetrant systems ���� Therefore� our model replicates two important features of such
systems� constant front speed and sharp interfaces�

Figure � shows graphs of our stress results �����
 and �����
 for the same pa�
rameters and times� An argument similar to the one outlined earlier can be made
for plotting �����
 for x � � rather than �����
� As expected� our stress now has a
maximum slightly behind the front �the position of which can be ascertained from the
gap
� In addition� in the region where the concentration of the penetrant is nearly ��
the stress in the polymer is nearly �� that is� the polymer is fully relaxed�
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C

x

Fig� �� Constant�coe�cient Fickian error�function pro�le�

��

x

Fig� �� Stress pro�les� a � ���� C� � ��	�� � � 	� In decreasing order of darkness� t � 
� ���
�
�


� Remarks� The results in this paper clearly demonstrate that non�Fickian
behavior occurs in many polymer�penetrant systems� We have constructed asymptotic
results where the di�usion coe�cient is small� in which case the addition of a non�
negligible viscoelastic stress term to the chemical potential introduces memory e�ects
that greatly a�ect the character of the solution� In addition� the moving boundary�
value problem becomes much more di�cult mathematically� since it no longer yields
to simplistic similarity�variable techniques� Therefore� more sophisticated methods�
such as that of Boley� must be used�
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The system of integrodi�erential equations that results cannot be solved in closed
form� thus� an asymptotic solution is expedient� For any a � �� a solution that
for small time moved with speed proportional to t����� as expected from a di�usive
system� was found� This is indicative of the fact that as t � �� the e�ect of memory
is not yet important� since our de�nition of the stress implies that the time history
begins at t � ��

However� as time progresses� the e�ects of memory become more and more im�
portant� This memory e�ect� which makes its presence felt in the second term on
the left�hand side of ����
� eventually forces the front to move with constant speed�
a phenomenon not seen in Fickian systems with bounded initial and boundary con�
ditions� In addition� as time grows ever larger� our equations lead to solutions where
an increasing portion of the rubbery polymer is fully saturated� and the width of the
decay to C� is much narrower than in Fickian systems� This behavior successfully
models some of the phenomena seen in polymer�penetrant systems ����

Obviously� ����
 is a restrictive class of parameters� However� this does not mean
that solutions do not exist when C� does not satisfy �����
� What can we say about
such systems when a is positive! Well� our discussion in the �rst paragraph of x �
still holds� that is� the front must move with constant speed to satisfy the long�time
asymptotics of �����
� However� our solution �����
 is based on the assumption that
the next order in the asymptotic expansion of s�t
 as t�� is O��
� If the next term
is larger than O��
� then our expansions for T g and T r would diverge� For instance� if
s�t
 � s�t�O�t���
� then one of the bracketed terms in �����
 would be exponentially
growing�

Therefore� it is possible that when C� does not satisfy �����
� solutions still ex�
ist� however� two facets of our analysis must change� First� we must allow for the
possibility that there is a correction to s�t
 that is greater than O��
� To obtain
such solutions� we must abandon such simplistic expressions as ����
 for our �ctitious
boundary conditions and incorporate such functional forms as the product of polyno�
mial and growing exponential terms� However� to leading order the front would still
move with constant speed by our discussion in the beginning of x ��

By properly postulating a 	ux ����a
� using our physical and mathematical knowl�
edge and intuition about polymer�penetrant systems� we were able to obtain results
that replicate several salient features of such systems� By reducing the size of the di�u�
sion coe�cient� thereby emphasizing the e�ects of the nonlinear viscoelastic term� we
have obtained fronts that move with constant speed� These fronts� which are sharper
than those found in ordinary di�usive systems� have been found experimentally to be
characteristic of certain polymer�penetrant systems�

�� Nomenclature�

���� Variables and parameters�

Units are listed in terms of length �L
� mass �M 
� moles �N 
� or time �T 
� If the
same letter appears both with and without tildes� the letter with a tilde has dimensions
but the letter without a tilde is nondimensionalized� The equation number where a
particular quantity �rst appears is listed� if applicable�


a� coe�cient in 	ux�front speed relationship ����
� units N�L��
A� constant� variously de�ned�


C���
t
� concentration of penetrant or diluent at position � and time 
t� units N�L��
D� 
C
� binary di�usion coe�cient for system� units L��T �
E� 
C
� coe�cient preceding the stress term in the modi�ed di�usion equation� units

NT�M ����a
�
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f��
� arbitrary function� variously de�ned�

J���
t
� 	ux at position � and time 
t� units N�L�T �

p� variable exponent for small�time asymptotics�

s�
t
� position of secondary front� de�ned as 
C�
s�
t
� 
t
 � 
C�� units L ����
�


t� time from imposition of external concentration� units T ����b
�
T � imbedding of C from one region to the fully semi�in�nite region ����a
�

x� distance from boundary� units L ����a
�
z� dummy integration variable�
Z� the integers�

�� 
C
� inverse of the relaxation time� units T�� ����b
�

� nondimensional parameter� value �E�D� ����a
�
	� perturbation expansion parameter� value �g��r ����a
�
�� coe�cient of concentration in stress evolution equation� units ML��NT �

����b
�
�� coe�cient of 
C�t in stress evolution equation� units ML��NT � ����b
�


��
x� 
t
� stress in polymer at position 
x and time 
t� units M�LT � ����b
�

���� Other notation�

b� as a subscript or superscript� used to indicate a quantity at x � � �����
�
c� as a subscript� used to indicate the characteristic value of a quantity ����
�
g� as a subscript or superscript� used to indicate the glassy state ����
�
i� as a subscript or superscript� used to indicate a quantity at t � � �����
�

j � Z� as a subscript or superscript� used to indicate a term in an expansion� in
either t� x� or 	�

r� as a subscript or superscript� used to indicate the rubbery state ����
�
�� used to indicate a dummy integration variable ����b
�
� � used to indicate di�erentiation with respect to t ����
�
�� as a subscript� used to indicate at the transition value between the glassy

and rubbery states ����
�
�� as subscript� used to indicate a term in an expansion in t or x�
����s� jump across the front 
s� de�ned as �g�
s��
t
� 
t
� �r�
s��
t
� 
t
 ����
�
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