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Many cellular reactions involve a reactant in solution binding to or dissociating
from a reactant attached to a surface. Most studies assume that the reactions occur
onthis surface, when in actuality the receptors usually lie in a thin layer on top of

it. The effect of this layer is considered, particularly as it relates to the BIA¥ore
measurement device, though the results are applicable to biological systems. A di-
mensionless parameter measuring the strength of the effect of the receptor layer is
found. Asymptotic and singular perturbation techniques are used to analyse asso-
ciation and dissociation kinetics, though the effect of the receptor layer need not be
small. Linear and nonlinear integral equations result from the analysis; explicit and
asymptotic solutions are constructed for physically realizable cases. In addition,
effective rate constants are derived that illustrate the combined effects of transport
and the receptor layer on the measured rate constants. All these expressions provide
a direct way to estimate rate constants from BIA&Srdinding data.

(© 2001 Society for Mathematical Biology

1. INTRODUCTION

In biological systems, many chemical reactions of interest occur between two
components, one of which is confined to a surface (often receptors on a cell mem-
brane) while the other floats freely in solution (herein called ahalytg. For
instance, newborns receive immunoglobulins from mother’s milk through binding
to receptors on intestinal epithelial celRaghavaret al, 1994. Signaling and
adapter molecules in the cytoplasm interact with the cytoplasmic tails of receptors
embedded in the plasma membra@mldstein and Demhd 995. Gene expres-
sion is significantly influenced by DNA-protein interactions in these geometries
(Szaboet al., 19995.

With few exceptions Goldstein and Wofsyin preparation; Schuck 1996
Yarmushet al., 1996 it has been customary to model such reactions as occurring
onthe biological surface by imposing a reacting boundary condition on a transport
equation for the analytdb@avis et al., 1995 Myszkaet al., 1998 Edwards 1999
2000 Edwardset al., 1999 Masonet al., 1999. A truer model would include a
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smallreceptor layerin which the receptor sites reside and through which the ligand
must diffuse to reach them. Due to the thinness of such layers, the surface-reaction
approximation has been preferred due to its simplicity.

The thinness of the layer is not the key issue, however. Even a thin layer will
significantly affect the reaction if it is nearly impermeable to the ligand. The more
relevant consideration is the time it takes for ligand molecules to diffuse through the
receptor layer and reach a receptor site. If this time scale is small (in some relative
sense), a surface-reaction model is appropriate. In this manuscript we derive the
key dimensionless group which determines the effect of the layer.

We specialize to the case of the BIAc8Ye which is a surface plasmon reso-
nance (SPR) device for measuring rate constants; however, the results can easily
be extended to biological systems of interdstiyards 2000. The configuration
of the BIAcoréM is described in great detail elsewheka(lssonet al., 1994 Sz-
aboet al, 1999. For our purposes, it is sufficient to know that the device consists
of a rectangular channel through which the analyte flows. The receptor is embed-
ded in a thin dextran matrix attached to the ceiling of the channel, and real-time
data can be gathered as the experiment progresses.

The BlAcoré™ is modeled as a coupled system between a convection-diffusion
equation in the flow and a reaction-diffusion equation in the dextran layer. Af-
ter scaling, we derive results in the case of sramlohler numberDa, which
measures the effect of transport. Since including the layer also involves adding a
transport effect, we find that the correction from the dextran layer occ@sa).

We obtain explicit solutions for the bound state as well as expressions where the
rate constants obtained from such a system can be interpreted in terms of the ‘true’
rate constants (i.e., the ones if both reactants were in solution).

In addition, we consider the case where BaO(1) and transport and reaction
effects balance. A nonlinear integral equation results, but the rate constants can
easily be estimated from a short-time solution for the bound-state concentration.
We consider not only association, but also dissociation experiments. We construct
explicit solutions in the case where the initial density of empty receptors is uniform.
These results should help experimentalists design and interpret the results of their
trials, as well as provide insight into how receptor layers affect biological systems.

2. GOVERNING EQUATIONS

We consider the BIAcor@! to be divided into two regions: the open channel
(considered to be the the region<0X < L, 0 < ¥ < H;, where the subscript ‘f’
stands for ‘flow’), and the dextran layer (considered to be the the regioR G< L,

0 > y > —Hg, where the subscript ‘d’ stands for ‘dextran’). For the purposes of
this paper, the dextran layer is considered to be a solid in that there is no appreciable
flow in it.

This consideration imposes a no-slip condition on the flow at the dextran—fluid
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interfacey = 0. Since there is already a no-slip condition at the wa# H;, the
flow is standard parabolic Poiseuille flow with maximal velodity4. Thus, the
equation for the concentratidy of the ligand in the channel is as follows:

3Cf ~ 82Cf 32Cf )7 y 3Cf
= D¢ V—{1- 1
of (8x2 + ay2> Hs H ) ax’ (1)

whereDs is the molecular diffusion coefficient of the ligand in the flow. For now,
we take the initial concentration in the open channel to be an arbitrary constant:

Ci(X, ¥, 0) = Cy. (2)

In practice, for an association experiment it would be zero, while for a dissociation
experiment it would be some equilibrium value. At the upstream &nd Q), we
have a prescribed constant concentra@ign

éf (01 y9 f) = CT' (3)

In practice, for an association experiment it would be a specified value, while for a
dissociation experiment it would be zero. This upstream concentration will change
from run to run of the same experiment.

Since there is no convection in the dextran layer, the governing equation for the
concentratiorCy of the ligand is as follows:

3Cqy =« (8°Cq 9°Cq\ 9By
— = Dy — | - —, 4

at <ax2 + 8)72> at @
where Dy is the molecular diffusion coefficient of the ligand in the dextran. Here
Bqa(X, ¥, ) is the concentration of the receptor in the dextran.

Across the interfacg = 0, the fluxes (which arise only from diffusion) must

balance: _ 3
~ 0Cr _ . ~ 0Cq .
D — y O,t - D — N O,t . 5
35 (X,0,t) = Dq 5 (X,0,0) (52)

We must also have a condition on the concentration itsgif=at0. At the interface,
the concentration of the ligarid the fluid must be continuous. However, in the
dextran layer liquid exists only in some volume fractipn(called thepartition
coefficien). Therefore, théotal volume concentration in the dextran layer must be
reduced by that factor:

#Ci(X, 0,) = C4(X, 0, D). (5b)

There is no flux through the solid surface adjoining the dextran layer:

oC
d—d<x —Hq, ) = (6)
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Finally, we must describe the reaction by specifyirig/df. The bound state
evolves according to a bimolecular reversible reaction. However, the production
term must be modified somewhat. First, since the reaction occurs inside the pores
only, it is thefluid concentration ofCy that is important in the reaction, so we
must divide by the partition coefficient. Second, diffusion of the ligand through
the dextran may be inhibited by the tortuosity of the pores. This effect is modeled
through thesteric hindrance factor awhich is scaled so that = 1 corresponds to
diffusion through a substance with no pores and 0 corresponds to no diffusion
because of the shape or size of the pores. In summary, the governing equation for
the reaction is given by

3Bd_~ a ﬁT ~ | x 5 = ~_@
R H L) LG o ")

wherek,, andky are rate constants, amdis the affinity constant. In keeping with
the surface-reaction approximation, values for receptor site deRsiaye usually
given in units of area concentration. To convert to the volume concentrations we
use here, we simply divide by the widthy of the dextran layer.

In addition, we need an initial condition fd3:

Bd()‘z’ )7, O) = Bd,i()zv )7) (8)

In practice, for an association experiment it would be zero, while for a dissociation
experiment it would be a steady-state value, which we shall calculate later.

2.1. Reducing to the previous caseWe note that we may always relate our
work here to the surface-reaction approximation by defiiBpgvhich has units of
area concentration, to be the accumulated bound state integrated across the dextran
layer:
0
B, f) = / Ba(X, ¥, 1) dy.
_Hd
If we integrate 4) and (7) across the dextran layer and take the limittgs— 0
using the mean value theorem, we obtain

= konal (Rt — B)C(1(X,0,©) — kot B, (9)

where we have usedd), (b) and 6). Since a surface has no steric hindrance,
we takea = 1. Equationsg) exactly match the equations in the surface-reaction
approximation Edwards 1999.
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3. SCALING

Next we must choose suitable scales in order to introduce dimensionless vari-
ables. Clearly the time scale of interest is the reaction time scale; it can be shown
that only the flow equilibrates on the shorter convective and diffusive time scales.
We introduce a boundary layer scaling fpin the flow, since it can be shown that
ligand transport is relevant only in the unstirred layer near the intertadedrds
1999.

We consider an association experiment,&e = C; # 0. In addition, we
neglect the steric hindrance factor, so we take- 1. We normalize the ligand
concentrations by the upstream concentration and the bound state concentration by
the initial number of receptor sites:

o - - é )~(7 N’f
Vi = Pel/ngf’ t = konCrt, Cix, w0 = f(CiTy)
(10a)

(10b)

| >

X

Pe— V/L  diffusive rate of mass transfer in flow
Dy /H? "~ convective rate of mass transfer in flow

Herey; is a boundary-layer variable because e (for more details on the sizes
of relevant parameters, see the Appendix).

For the dextran layer, we have a given dimension, narhiglywhich we use to
normalizey. In addition, motivated by5p), we note that the maximum value 6f
in the dextran layer i®C+. Therefore, we choose the following scalings:

_ vy . Ca(%, 9,
yd - Hd’ Cd(X, Yd, t) - ¢CT ’ (11a)
Mo~ . Ho-
Ba(X, Ya. 1) = — Bu(X, ¥. ), Ba,i (X, Ya) = ~—dBd,i(X, Y. (11b)
RT RT

Note that we have scaled tlyevariable in the flow region with the Pé&tinumber
determined by the dynamics, while in the dextran layer we have scaled by the
device-determined width.

Substituting 109, (b), (118 and (b) into ¥) and (), we obtain, to leading orders,

9By K
— =[(1-By)Cqy— KB K=— 12
T [( d)Cd dl, c (12)
aC; %Gy aC; konCtL
Pe‘l/‘?’ [ — —_—, = s 13
kon 9t ayfz i 9% kon Vv ( )

where in (L3) we have used the fact that Pe 1 in eliminating thex-diffusion
term. FromEdwards(1999 we have thak,,P€/® « 1, and hence we are in the
steady state of the flow transport equation.
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Substituting {08 and (LOb) into (4) yields the following:

9°C 9B, aC
- = DaD (—d + R‘l—d), (14)
dy3 at ot
R concentration of receptors
R=— = : PO (15a)
CtHgo concetration of analyte
Kon Ry reaction ‘velocity’
a= — = — — , (15b)
D¢/(HPe1/3)  diffusion ‘velocity’ in diffusive boundary layer
D¢ /(H:Pe¥3)  diffusion ‘velocity’ in diffusive boundary layer
D t/ (Hs ): y y y,(lSc)

$Dg/Hqg diffusion ‘velocity’ in dextran

where we have used the fact thd§ <« L to eliminate thex-diffusion term. We
see from the Appendix thaR > 1, and hence we are in the steady state for the
diffusion part of (L4).

Here Da is thdamldhler number Careful readers will note that we could have
combined D® into a single new Darmishler number relating the reaction velocity
to the diffusive velocity in the receptor layer. However, the Dathikr number here
is the same one that appears in the surface-reaction approximation when there is
no receptor layer. Thus, to reproduce the surface-reaction approximation we need
take onlyD — 0 to obtain the limitHy — 0. D measures the effect of the dextran
layer. Note that it involves not only the ratio of the widths of the regions, but also
diffusive effects as well through the ratidy/ Dy, which is sometimes calleddxag
coefficientYarmushet al., 1996.

We conclude by substitutind 09, (b), (113 and (b) into the relevant boundary

data @), (5a), (b), (6) and @):

Ci(0, y;, 1) =1, (16)

0Cq dCs
—(x,0,t) =D—(Xx,0,1), 17a
oy ( ) oy; ( ) (17a)
Ci(x, 0, 1) = Cq(x, 0, 1), (17b)

dCyq

— (X, —1,t = O, 18
Ve ( ) (18)
Ba(X, Ya, 0) = Byi(X, Ya), (19)

where we have used %9. In addition, sincey; is a boundary layer variable, we
must have the condition th& matches the saturated value of the bulk flow as we
exit the layer:

Ci(X, 00, t) = 1. (20)
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Finally, we consider the measurements that are actually taken by the BiXcore
Technically, the measurement is a response signal of an evanescent wave that pen-
etrates into the dextran layer. This response is then averaged over the scanning
range, which is a subintervimin, Xmax] Of the channel length. Due to the nature
of the instrument, the signal decays with distance away from the swface-1
(Liedberget al, 1993 Schuck 1996. Thus the dimensionless signgy is given
by

Xmax

_ 1 0
Ba(t) = 7/ |:/ K(Ya) Ba(X, Yg, 1) de:| dx,
Xmax — Xmin J xmin -1

where/C(yy) is the decaying kernel. In this manuscript we assume that the kernel
decays over a region much wider than the dextran layer, so we may take it to be
equal to 1. Therefore, we have

_ 1 Xmax 0
Ba(t) = 7/ |:/ Bua(X, Yds t)de} dx. (21)
Xmax — Xmin Xmin -1

4, SvALL DA, GENERAL RESULTS

In order to obtain accurate rate constant measurements from the BiN¢itris
desirable to minimize the effects of transport so that the reaction occurs uniformly
along the channel length. This corresponds to the case where DaEdwards
1999 Edwardset al,, 1999. Here we shall calculate the firao orders of the
bound concentration in the limit of small Da, including the effect of the dextran
layer. This will allow us to compare and contrast the effects of transport and the
layer in the calculation of rate constants.

If we are to calculate the next order in a perturbation expansion, the question
immediately arises: what is the perturbation parameter? Equati@haid (L4)
give us two choicesk,nP€”3 and Da. It can be showiE@wards 1999 Edwardset
al., 1999 that Da is larger, and hence should be used as the perturbation parameter.
Therefore we expand our expressions in the following forms:

Ci(X, Y1, t) = Cro(X, ¥, t) + DaCr 1(X, ¥, t) + o(Da), (22a)
Ca(X, Vg, t) = Cq0(X, Vg, t) + DaCq 1(X, Y4, t) + 0(Da), (22b)
Ba(X, Ya, t) = Bgo(X, Ya, t) + DaBqg 1(X, Yq, t) + 0(Da). (23)

Substituting 229, (b) and @3) into (14), (18), (17b), (a), 3), (20), (16), (12
and (L9), we have, to leading two orders:

9°Cyo 0 9Cq.0
awy: 9Yd

x,=1,t) =0, (24a)
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Cio(X,0,t) = Cqyo(Xx, 0, 1), (24b)
aC aC
495 0,t) = DZ0x, 0, 1), (25)
9Yd Y%
dCro  0%Cio
o _ 20 oo ) =1, Cro(0, yit) = 1, 26
o 7y £0(X, 00, 1) 1,000, yr, 1) (26)
9By
T (1 — Bg,0)Cq,0 — KBq,0, Ba.o(X, Yd, 0) = Bq,i(X, Ya), (27)
92C B aC
- p=2 x, -1t =0, (28a)
ay2 at 9Yq
Cra(x,0,t) = Cqa(x, 0, 1), (28b)
0C oC
¢1(x,0,t) = D=2 (x,0,1), (29)
9Yd oY
aC 92C
Yt = T Cpax.00,) =0,  Ci1(0,y,1) =0, (30)
aX dy;
9Bq1
ke (1 — Bg,0)Cq1 — By1Cd0 — KBq 1, Bg1(X, Y4, 0) = 0. (31)

Note thatD appears only at first order, becau3erises from essentially another
transport effect, and the leading order of our system will reduce to the well-mixed
case. Thus, even matrices with highvalues can be ignored if the experiment is
designed with a small value of Da.

Solving 249 and (b), we obtain

Cao(X, Yo, t) = Cto(X, 0, t). (32)

Therefore, we note fron3@) that since the reaction time scale is slower than the
diffusion time scale, on the reaction time scale the diffusion is instantaneous and
to leading order the concentration in the dextran layer is uniform. Thus to leading
order the dextran layer behaves like a surface, since there is no variation in the
yq-direction.

Substituting 82) into (25), we have the following:

9Ct.0

oy (x,0,t) = 0. (33)

Solving 26) and @3) yields the constant solutions

CroX, y1,t) =1 = Cao(X, Yo, 1) =1, (34)
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where we have use@®2) again. Substitutingd4) into (27) and solving, we obtain

—at

Bd_yo(X, Vo, b)) = + Bd’i(X, yd)e*"t, a=K+1 (35)

Therefore, the measured quantity indicated?t) fvould be

—at

Bao(t) = + Bgie . (36)

The steady state 086) is « =%, and it can be shown that this is always the steady
state, no matter the size of Da. Thus we may always obtain an estimake for
simply by letting the experiment run to completion.

Taking the derivative of35) with respect td, we have the following:

0 Bd,O _

ot e “'[1 — By, (X, Ya)l. (37)

For algebraic simplicity, we define a new functibg(x, vy, t):

9°F, 9B, oF
R el —2x,~L1)=0,  Fo(x,0,t)=0.  (38)
Yy ot aYqd

Substituting 87) into (289 and using 88), we may solve to obtain
Ca1(X, Ya. t) = DFo + g(x, 1), (39)

whereg(x, t) is unknown.
Then evaluating39) at the interface and usin@&h) and 9), we have the fol-
lowing:

0Cs 1

Cr1(x,0,1) = g(x, 1), By

dFo
X7 Ov t = X, 0, t . 40
( ) ayd( ) (40)

To solve B0) and @0), we note that due to the convective nature of the flow, any
exit condition we impose will necessitate the insertion of a boundary layer about
x = 1. However, since this region is outside of the scanning range, it is not of
interest. Thus, we may embed the problem in a semi-infinite regionaind use
Laplace transforms ix to solve the problem. Since the quantity of interest is
Ci.1(X, 0, 1), the transform can be inverted relatively easily to yield

B_FO(X - S’ Ovt) dé‘:

1 X
0= gtz |, i =

(41)
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Note thatFy is known, sog can be explicitly determined, in theory. Substitut-
ing (41) into (39), and using the result along witB4) in (31), we obtain

0Bq1
ot

F
+aBgy=(1- Bd,0)|:DF0— Q(X—S,O, 1Y) a } (42)

1 X
3131(2/3) /0 dYd £2/3

However, there is a problem witd2). We note from 87) that Fy depends on
only through the quantitg=*!, which is a solution of the homogeneous operator
in (42). Thus we are forcing the operator i3 with a multiple of the homoge-
neous solution. This will lead to terms that behave tige®t, which are similar in
form to a secular term in a two-timing problem. Of course, due to the facBat
approaches a®(1) steady state, DBy 1 < By for all t, and so technically the
expansion does not fail at this order. However, this form should still give us pause,
since if we were to subtract off that steady state, then ferO(Da '), the second
term in our expansion would be the same size as the displacement from the steady
state. The standard way to fix such a problem is to introduce a multiple-scale ex-
pansion. However, from the work iBdwards(1999 we know that though it is
possible to construct such an expansion, such an expansion is not illuminating.

5. MODERATE DA

We next focus on the case where BaO(1). From (34) we note that we may
simplify our work if we introduce the following transformations:

Cf(xa yfa t) = 1_DaCf,A(X9 Yf» t), Cd(X, Yd, t) = 1_DaCd,A(X7 Yd, t)a (43)

where we choose the minus sign sifi@eandCy must be less than their saturation
values. With these substitutions, our system will be exactly in the form of the sys-
tem in Sectiord for Cy 1 andCs 1, with the subscript ‘1’ replaced by the subscript
‘A’ throughout.

The boundary conditions ir28g and (b) still hold. However, since there is no
longer any expansion fdBy, the operator inZ8g becomes

0°Cga 0By
ayz at’

(44)

where the right-hand side is now unknown and the negative sign arises from our
substitutions in43). However, our trick in 88) works, with minor modifications.
If we now define

0°Fa
dyz ot

0B oF
—= 8—yA<x,—1,t>=o, Fa(x,0,0) =0,  (45)
d



Receptor Layer and Rate Constants 311
then the solution 0f44) and the boundary conditions iB&g and (b) is

Caa(X, Yo, t) = —[DFA + 9(x, D], (46a)

OFs de
31/3r(2/3) / dyg 50V

Substituting 43), (463 and (b) into (2), we obtain

1 aBd 1 X BFA 5
1o Bd( ot KB“) a{31/3r(2/3)/0 ayg X750V D A}'

(47)

gx,t) = (46b)

In contrast to 42), equation 47) is nonlinear. It is difficult to solve explicitly,

but we may glean the information we require (namely the rate constants) more
easily by obtaining a small-time linear asymptote for the soluBgnWe do so by
assuming an expansion of the form

Ba(X, Ya, t) = Bgi(X, Ya) + Ba(X, y)t +o(t), t— 0. (48)

With such a substitution, we simply define a new varidhl€x, yq) in the following

manner:

0%F oF
> = Ba. —iw—n—o Fi(x,0) = 0. (49)
ayg

Then substituting48) and @9) into (47), we obtain, to leading order in

AETEP DH}

1— Bd,l_(ﬂd+K Bd,i) = Da(l_ Bd,l){3l/3l—1(2/3) / 8Yd 52/3

(50)

which is again an unwieldy equation, though it is linear. In order to get at least one
result, we will consider the simple, but physically most important, case wBgre
is a constant in Sectiof.3.

6. CONSTANT INITIAL STATE

6.1. General remarks on effective rate constantsf the initial state is constant
and Da« 1, we may rewrite our solutions in terms of effective rate constants.
In such a formulation, the integral equation 8y is replaced by an ODE foBq
which is good toO(Da). Such a form is useful because experiments can usually
be designed with Dax 1, and commercially available data-fitting software can
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more easily estimate the rate constants by fitting the data curve to the solution of
an ODE.

Before considering the case discussed here, we present some general remarks on
systems with receptor layers. We consider a system similar to that in the rest of the
manuscript, but more arbitrary in the spatial domain:

9B
LqiCq=DaD", xeRg  FiCa=0, xe€dRan

ot
Efo = O, X e Rf; .7'—fo = 0, X e BRf,n,
oC oC
Cf:Cd, —d= D—f, XEBRd’f,
an an
0By

W=(1_Bd)cd_KBd» X € Ry,
whered/an refers to the normal derivative is a linear operatotF is an affine
operator, the subscript ‘n’ refers to a nonreacting boundary (in our §ase; Hgq
andy = Hy), and the double subscript ‘d, f" means that boundary shared by the
flow and the receptor layer (in our cage= 0).
We take the case where Dg 1 and assume that and F are independent of

Da. Then our previous scalings yield the analogous equations for the leading two
orders:

[,fo,o = 0, X e Rf; f.f’QCf’() = 0, X € BRf,n; (51)
,CdCd,o = O, X e 'Rd; ]—"d,oCd,o = O, X e 3Rd,n§ (52a)

0C, oC
Cio=Cqo, 40— p=to, X € 0R4t; (52b)

an an

0B

L4Cq1=D 8:,0’ X € R (53a)
fd,lcd,l = 0, X e aRd,n§ (53b)
LiCs1=0, X € Rs; F:1Cr1 =0, X € 0Rs n, (54a)

0C, oC
Ci1=Cq1, a1 - p=ie X € 0R4t; (54b)

an an

0B

8—td = (1 - Bg)(Cyo+DaCq1) — KBy + O(D&), X € Ra, (55)

whereF, and.F; are the corresponding pieces of the operdioSincefF is affine
and independent of D&, must be linear.
If the solutionCq o of (528 and (b) is uniform iMR 4, the leading order 0549
and (b),
By
at

= (1 - Bg,0)Cq0 — KBqp, X € R,
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is a function only of time, and hend®&, o is a function of time only. Then, since
both L4, andFy 1 are linear, we may write

d d
Car(x. 1) = dB"’°hd<x>, Crato ) = 1580 ) (56)
t dt
wherehy andh; satisfy 63b), (548 and (b), and
thd =D, X € Rd. (57)

Substituting $6) into (55) and rearranging, we have

9By dBuypo
2 Dpa1-B '
at (1=Bao) =g

hg = (1— By)Cqo— K By+O(D&d), X € Rq. (58)
We define the average & in the usual way:
Ba(t) = ! /B(x t) d(Rq)
d - |Rd| d ’ d )

where|R4| is the area ofRy. Averaging 68), we obtain

dBy  (1— By)Cqyo— KBy
dt  1—Dal— Byhg

+ O(D&), X € Raq, (59)

which is exactly the form iledwardset al., 1999 Thus, the effect of the receptor
layer (incorporated only i) decouples from that of the transport (incorporated
only in Da). In the absence of transport, we have thatb@ and 66) reduces to
the standard ordinary differential equation governing the reaction.

When Da#£ 0, transport slows the reaction, the denominator increases, and hence
the observed rate constants are smaller than the true values. SinBg term is
the average concentration of vacant receptor sites available for rebinding, one may
express the effective rate constants in terms of rebinding probabilithsgrdset
al., 1999.

6.2. Specific results, small Da.Now we return to the BlIAcor®' geometry
whenByi(X) is a constanBy;. In this case,35) becomes

1— e
Bd,o(X, Ya, 1) = Y x =1—aBy;. (60)

SinceBy,o depends only om (as postulated in Sectidhl), the averaged quantity
will be the same a8y o itself:

- 1— yeot
Bo(t) = + (61)
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590 10‘00 lSpO 20‘00 25‘00

~0.05-
~0.1-
~0.15-

021

Figure 1. E_Bd)l vst for (in decreasing order of thicknesB) = 0, 1/4, 1/2, 3/4, 1. Note
the true correction to the well-mixed case will be Da times this result.

Substituting our results int8), we have the following:

xYa(Ya + 2~

. (62)

Fo(X, ya,t) =

Substituting 60) and 62) into (42) and solving subject to the initial condition
in (31), we obtain

x (et —1) Ya(Ya + 2) 32/3x1/3
« Kt]{D[ 2 }_ re/3) }

(63)

Xefat
Bd,l(xa yds t) = - |:
o

Substituting 63) into (21) yields

_ —at —at _ q D 35/3 4/3 43
Bea(t) = X& | X D xe|[ 2+ Omax — Xmn)_| (4
’ o o 3 4" (2/3) (Xmax — Xmin)

Note that the last bracketed term is separated into the correction from the layer (the
first term) and the correction from transport along the channel (the second term).
Figure1 shows a graph oBy 1 [as given by 64)] vs thedimensionatime f (in
seconds), since this is how the constants would be determined in a given experi-
ment. Our parameters listed in Taldlare fromEdwards(1999; the appendix of
that work may be consulted for appropriate ranges of the parameters. Each curve
represents a different value 8f; note that ad increases, the effect of the layer
increases, causing a larger deviation from the well-mixed result. However, in all
cases the error is small, since the expres&ignmust still be multiplied by Da to
obtain the true correction.
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Table 1. Parameter values for Figs 1 and 2.

Parameter Value Parameter Value
B; 0 t 103fs1
Ct (mol cmi—3) 10711 Xmax 7.92x 1071
Da 101 Xrmin 2.08x 1071
K 1 o 2
kon(cm3mol~1s1) 108 X 1

Now we turn to the effective rate-constant approach. Substitulifigifto the
operator in 289, we obtain

d?hg
dyg

Thus, using an analogous technique to that used in the end of Sdctind in
deriving 62), we have

D.

Dyd(yd + 2)

ha(X, ya) = >

ah
+9(x),  hi(x,0) = g(x), a—y;(x, 0 =1

Since Fy and hy are so similar, we see that in solving the above, we obtain the
braced expression if6g):

Ya(Yd + 2) 33 1/3
h =D —
d(X, Yd) [ > ] r2/3)
which means that we can usg4j to obtainhg, keeping in mind that we extracted
a minus sign:

4/3 4/3
g _[E N (xS — X3 } (65)
3 4r (2/3) (Xmax - Xmin)
This is the expression we use in our effective rate constant equation:
dB 1-aB
d _ 24 L oD (66)

dt  1— Da(l - By)hg

Figure2 shows the error between the leading-order solutidh &nd the solution
to the effective rate-constant equati@®)vs time for various values db. Again,
asD increases, the effect of the layer increases, causing a larger deviation from the
well-mixed result.
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Figure 2. Difference between solution to (66) and (61X ¥er (in decreasing order of
thickness)D =0, 1/4, 1/2, 3/4, 1.

6.3. Specific results, moderate DaWe conclude Sectiob by examining the
moderate Da number case. The quantity in which we are truly interesigg is
which is given by

_ 1 Xmax 0 F
B = 7/ “L(x,0dx, (67)
Xmax — Xmin Jx BYd

min

where we have used9). Hence it is easiest to work directly with, in (50):

9%F, 1 X 9F; dg
1-aByj——— =Da(1-By)| =—=——— | —(x—£,00—=—DF.|. (68

The solution process fo68) is as follows. By taking Laplace transforms, one
can write 68) as an ODE foif, the Laplace transform df;, which includes the
boundary conditioml F; /dy4(0) as a parameter. Note that the integral of the inverse
Laplace transform of this boundary condition is the only piece of information we
need. Therefore, the inversion process is relatively straightforward and we obtain

x € " tanhi
A

I1Bq; X1 = [€% —1—|P(4/3, —ux)| +P(5/3, —ux)[l,  (69)

where

R b _ 1] Da(l— By)I'(1/3) tanhr 1°
mitixi= [Ct@ds, = g ST IE

1?2 = DDa(1 — By), (70a)
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andP is the normalized incomplete gamma function defined by

_ _ )/(n/3, _I’LX) _ 1 X —&en/3—1
P(n/3, —ux) = T3 F(n/3),/o e & dé&. (70b)

Thus we have the following:

= Z[Bd; Xmaxd — Z[Bd; Xmin]
Bd =

Xmax — Xmin

’

and hence it can be showBdwards 1999 that

_ KonCT{Z1[Ba; Xmax] — Z[Bd: Xminl}

Xmax — Xmin

Bq(f) ~ B + S, S (71)

We use the steady state to obtain an estimat& fdn order to calculate both rate
constants, we construct a linear fit to our small-time experimental data. Once we
have calculated the sloggof that line, we solve1) to obtainky,. It is important
to note that the relationship betweBrmandkg, is not linear, sincedy also depends
on kon through the parameter Da. Then using our valuekiowe may calculate
koir. We also note that in the limit th& — 0, we obtain

tanhi
A 14003 =1+0(D).

Therefore, for smalD the size of the correction is the same as that in previous
sections.

Using the small- and large-behavior of theP function, we can ascertain the
large- and smalk,, behavior ofS. For smallk,n, we have

S~konCrx,  kon— 0. (72a)

As expected, {29 shows that if there is no forward reactidt,{ = 0), the bound
concentration will not changes(= 0). For largek,,, we have the following:

. 12 2 2
33 xCrV 3D (Xmax — X

min) , Kon — 00. (72b)

S~ T
2% (1 - Bd,i)r(%) RTL% Hf§ (Xmax — Xmin)

The presence of a finite asymptote f8rin the limit of largeko, is physically
reasonable, since no matter how fast the reaction proceeds, the mass uptake will be
limited by the amount of unbound ligand available for assimilation. Note also that
equations 729 and (b) are independent &f.

Figure3 shows how the slop8 varies with the variablé for various values of
D. To plot our results, we again use the parameters feolwards(1999, which
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Figure 3.Svs log; gk for (in decreasing order of thicknes®)= 0, 1/4, 1/2, 3/4, 1.

Table 2. Parameter values for Fig. 3.

Parameter Value Parameter Value
Bj 0 Rt (mol cmi—2) 10712
Ct (mol cn3) 10711 V cms 1
Ds (cm? s~ 1) 28 x 1077 Xmax 7.92x 1071
Hs (cm) 5x 1073 Xmin 2.08x 1071
k 10~9%gymol s cnr3 X 1
L (cm) 24x10°1

are listed in Table. Herek is a dimensionless variable introduced to stabilize
the numerical calculations. The asymptotes are the same for all graphs&tace (
and (b) are independent &f. Note that asD increases, the slope decreases for
moderate values d&f. Thus, except for very fast and very slow reactions, the effect

of the dextran layer is to slow the initial speed of the reaction. That is to be ex-
pected, since the dextran layer introduces another transport barrier. This transport
barrier is irrelevant in the cases where the reaction is infinitely fast or infinitely
slow.

7. DISSOCIATION EXPERIMENTS

We now make some remarks regarding dissociation experiments. These experi-
ments are usually run after an association experiment has reached steady state. We
note from B6) that regardless of the initial data for the association experiment, the
steady state is given by o(X, yg, o0) = a~L, and hence equation9) is replaced
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by
1
Bd(xa Yd» 0) = E (73)

for the dissociation experiment. Note that this ensures that we are in the uniform
case detailed in Sectidh

During the experiment, the external flow is emptied of all ligands, so equa-
tions Q0) and (L6) become

Ci(x,00,1) =0, Ci(0, y;,t) = 0.

Replacing the boundary conditions iB6] with the leading order of the above
yields the constant solution

Cro(X, y1, 1) =0 = Cgo(X, ya. 1) = 0. (74)

Since the time scales are not dependent on the initial data, we again see that diffu-
sion will occur fast enough that any ligand that dissociates will diffuse out of the
channel and be swept away quickly.

Substituting 74) into (27), we obtain

e—KI
Ba,o(X, Ya, 1) = o (75)

where we have used$®). Since the definition oFy does not depend on the specific
form of By o, equations39) and @1) still hold. However, using44) in (28b), we
see that the equation analogous4g)(is

0Bq1
ot

1 X 9F, de
31/3F(2/3)/o a_w(x_g’o’t)%]' (76)

+KBg1=(01- Bd,0)|:DFo—

We note that only the left-hand side a1g) is different from @2).
Continuing to simplify 6) using Sectiorb.2, we note that since

82F0 . 3Bd,0 . Ke*Kt
gyza ot a

we have that our derivation proceeds analogously to that bed@rad henceg3)
becomes

Ke—Kt e—Kt -1 32/3X1/3 yd(yd + 2)
oo = (4 S ) o o
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which again exhibits secular behaviortas> co. We may calculate the average
as in Sectiorb.2, since the only change is to the coefficient of the braced quantity.
Thus, the equation analogous &) is

_ Ke—Kt e—Kt -1 D 35/3 4/3  4/3
Baa(t) = — (t - )[— + O~ Yoo ] (78)
o Ka 3 4AI'(2/3) (Xmax — Xmin)

We now focus on the effective rate-constant work. In Sedii@the derivation
of (65) was independent of the concentratiGgo in the dextran layer. There-
fore, (65) still holds in the dissociation phase. The only difference is that we must
use {74) instead of 84) in (59), so €6) becomes

dBy —K By
dt  1-Dal - Byhyg'

(79)

Since the effective rate-constant work is independent of the valGg @fthe com-
bination of 69) and €5) holds in both association and dissociation experiments.

Finally, we focus on the case where BaO(1). There are several notational
changes, but the general form of the solutions again remains the same. Our trans-
formations ¢3) become, motivated by ),

Cf(X, Yf» t) = DaCf,A(X’ Yf’ t)a Cd(xv Yd, t) = DaCd,A(X’ Yd, t) (80)

The change of sign makes the equation analogouAo (

1 (0By B g OFa o §
e K =08 PR g [ Gy 6005
(81)
Using thefBy substitution again, we obtain
3F1 &
KBqyi =Da(l— Byj)| DF — 2
Ba+ KBai = Da( d,l)[ 1— 31/3F(2/3)/ 8yd £, 0)§2/3} (82)

Continuing to simplify, we see that the equation analogou§®pié

Ke ux tanh/\

1B X] = [€% —1—|P(4/3, —ux)| + |P(5/3, —ux)[l. (83)

As in the previous section, we may show that

S~ ka T Kon — O, (84a)
34/3C. V1/3f)2/3 X2/3 X2/3 _
S~ T i OXmax = Xiyn) Kon — 00. (84b)

2T (1/3) Rr LY3HY® (Xmax — Xnin)
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8. EXPERIMENTAL CONSIDERATIONS

Now that the mathematical expressions have been calculated, it remains to in-
terpret them in an experimental context. Due to the fact that reactions occur on a
time scale slower than transport, the receptor layer in and of itself does not affect
measurements. Thatis, if one could construct an experiment where the flow was in-
finitely fast, the distribution of ligand along the channel would be uniform. Hence
diffusion into the dextran itself would be uniform and adjustment of the calculated
rate constants would not be necessary.

Thus, to minimize the effects of the dextran layer, one must first minimize trans-
port effects. This is done by setting the dimensionless parameter Dawhich is
equivalent to taking

3 PR3
Vs KonRrHrL (85)

b7
Though the bound fo¥ involves the unknown rate constdh;;], one should be
able to obtain at least an order-of-magnitude estimate through even unadjusted cal-
culations. The balance is between the upper limit on the flow velatighieved
in the device vs the lower limit on the receptor dendiy needed to achieve a
readout from the BIAcor@! that is strong enough to be usable.

Once Da has been reduced as much as possible, the next step is to reduce the size
of D, which can be achieved by taking

¢DaH{*LY3

Hy < =
d Df2/3v 1/3

(86)

Clearly to achieve this bound one should use as thin a layer as possible. Other
considerations are to make the partition coefficient as near to 1 as possible and the
diffusion coefficient in the dextran not much smaller than the diffusion coefficient

in the flow. An interesting note is that the bound depends inverseW'6t which

in (85) we have tried to make as large as possible. Though clearly a balance must
be struck, reducing Da is of primary importance. Since the dependerideoaf

V is weaker than that of Da, this argues for keepihgs large as possible within
device tolerances.

Once the parameters have been adjusted to minimize the effects of the receptor
layer, equations9) and 65) can be used to calculate the rate constants. Equa-
tion (59) is simply the standard evolution equation with a denominator that incor-
porates the effect of transport. Though technically only good in the limit of small
Da, a related equation has been shown to be accurate within a few percent in the
case of moderate and large DeEd(vards and Jackspsubmittedl.

In order to be more confident in the case when Da is not small, one can use linear
short-time fits of the data to estimate the rate constants. In the association case,
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one can use equation89) and (71). In the dissociation case one us88)(and the
fact that in this case

I
By(H) ~ ~ + <. (87)

9. CONCLUSIONS

Estimates of rate constants for chemical reactions play a key role in enhancing the
understanding of certain biological systems. With the advent of SPR technology
and its application in various measurement devices, scientists can now track the
evolution of the bound state during a controlled experiment. Unfortunately, such
technological advances are useless without the necessary mathematical models to
interpret the data.

Previous models for receptor-ligand reactions, both within biological systems
and without, have treated the receptors as embedded on a surface, thus reducing
the reaction to a boundary condition for a transport equation. In truth, the receptors
are embedded in a thin layer above the surface. Hence a more correct mathemati-
cal model for the system is a convection-diffusion equation for the analyte coupled
across an interface to a diffusion-reaction equation in the receptor layer. By intro-
ducing proper dimensionless variables, we noted that the reaction occurs on a time
scale slower than that for transport.

There are two key dimensionless groups in the problem: the BDaleknumber
Da, which measures the strength of transport effects, and the pardetdrich
measures the effect of the receptor layer. In the limit thatP®@, we reduce to the
standard well-mixed kinetic theory. We calculated the first-order correction in the
case that Da—~ 0, and demonstrated that the correction due to the receptor layer
occurs at this order. We calculated general expressions for any initial data, as well
as explicit and effective rate constant approximations for uniform initial data. The
general expressions are good only fo= o(Da) due to the secular nature of the
underlying operator.

In the case where transport is more important and=baD (1), we derived a
nonlinear integrodifferential equation for the concentration of the bound state. By
looking at the small-time asymptotic behavior of the data, we may construct es-
timates of the rate constants. We indicated how this small-time solution would
change as the rate constants varied, and we provided large- andksihavior
of the small-time solution.

Our results indicate that the effects of the receptor layer occur ony(B8),
which is usually small. However, sind® need not be small, especially for dense
matrices, the effect of the receptor layer can be as large as the effects of transport.
By characterizing the relevant properties of the receptor layer in the single param-
eterD, we provide guidance on how to design trials to minimize the effect of the
receptor layer.
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NOMENCLATURE

Variables and Parameters.Units are listed in terms of length._§, moles (), or

time (T). If the same letter appears both with and without tildes, the letter with a
tilde has dimensions, while the letter without a tilde is dimensionless. The equation
where a quantity first appears is listed, if appropriate.

a: steric hindrance factofr}.
B(-,f): bound ligand concentration on surface at positicand
) timet, unitsN/L? (4).
C(X,y,0): unbound ligand concentration at position ¥) and time
£, unitsN/L3 (2).
D: molecular diffusion coefficient, unitis?/ T (1).
Da: the Dambhler number, which measures the ratio of reac-
tion and diffusion effectsi(ch).
F. affine operator.
F(): arbitrary function, variously define@§).
f(-): arbitrary function, variously defined.
g(x,t): Dirichlet data, variously define®9).
H: height of a portion of the channel, units
h(x, -): function used in effective rate constant solutiéB)(
Z[-; X]: integration operator, defined ii@g as
X
[ f:x] E/O f (&) de.
K(yq): kernel of signal measurement operator.
K: affinity constant for system, defined &si/Kon, unNits
 N/LE (D).
Koir:  dissociation rate, unit§ —1 (7).
kon:  binding rate, unitd 3/(NT) (7).
L: linear operator.
L: length of the channel, units.
n. arbitrary constant.
P(n/3, —Bx): normalized incomplete gamma functiorp).
Pe: Pedt number for the system, which measures the
ratio of convective to diffusive effects, defined as
V H?/DsL (10b).
R: arbitrary region.
Rr: receptor sites, unithl /L2 (7).
S. slope of aline, unity ~* (71).
t: dimensional time, unit¥ (1).
V: four times the (maximal) velocity of flow at center of
channel, unitd /T (2).
X: arbitrary position coordinate.
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dimensional measure of length along the channel, units
éir%le)zhsional measure of height from dextran—flow inter-
face, unitsL (1).

the integers.

dimensionless constant, defined as K (35).

term in expansion oBy(X, Vg, t) for smallt (48).
dimensionless constarit@d.

dimensionless constarit@g.

dummy variable.

partition coefficient $b).

dimensionless constar@().

as a subscript, used to indicate the dextran layer.

as a subscript, used to indicate the flow regibh (

as a subscript, used to indicate the initial state of a quan-
tity (2).

as a subscript, used to indicate the right endpoint of the
scanning range.

as a subscript, used to indicate the left endpoint of the
scanning range.

as a subscript, used to indicate an expansion in22a (

as a subscript, used to indicate the total value of a quan-
tity (3).

as a subscript, used to indicate a displacemé&)t (

used to denote the mean of the bound concentration over
a subset of dextran layer.

used to indicate the Laplace transform of a quantity.
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APPENDIX

In Table 3 we specifically compile parameter values relevant to the new analysis
here; other parameters may be found in the appendi&dvwards(1999. The
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Table 3. Parameter values from the literature.

Parameter
Cr D/ Dt Hd Rr ¢

Reference (201 mol/cn®) (1073 cm) (10712 mol/cn?)
Edwards (1995) 2-5
Johnsson (1995) 1-2
Karlsson (1994) 0.3-1
Lofas and Johnsson (1990) 1
Parsons and Stockley (1997) 0.3-1
Schuck (1996) 0.02-0.1 0.1-1 0.3-1
Yarmushet al. (1996) 025-40 0.04-0.12 1 .05-4 0.1-0.25

Table 4. Calculated parameters.

Parameter Range

D 6.69x 104 < D < 3.73 x 107 (see note in text)
Pe 374 < Pe< 4.16 x 10°

R 125 < R< 1.6 x 10’

parameters in Yarmustt al. are for a bovine serum albumin/monoclonal antibody
system. The varying values &1y in the literature arise at least partly from the
fact that the BIAcor&" comes with various sensor chips, each having different
thicknesses of the dextran layer. In addition, the pape8diyuck(1996 contains
numerical simulations, and thus various values Iﬁar/ljf, Hg, and¢ could be
employed.

Table4 shows the ranges of the dimensionless parameters in our analysis given
the parameters in Table 3 afaiwards(1999. We note that both Pe> 1 and
R > 1, as claimed. We make a brief remark about the upper bourl iafthe
table, which arises from taking a highly unlikely combination of parameters. If
instead of this combination, we take the value=P8.71 x 10* we use to plot our
graphs, the upper bound d#y from Johnssoret al. (1995, and the experimental
bounds fromYarmushet al. (1996, we obtain the upper bound

D =719,

which is moderate, not large.
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