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Many cellular reactions involve a reactant in solution binding to or dissociating
from a reactant attached to a surface. Most studies assume that the reactions occur
on this surface, when in actuality the receptors usually lie in a thin layer on top of
it. The effect of this layer is considered, particularly as it relates to the BIAcoreTM

measurement device, though the results are applicable to biological systems. A di-
mensionless parameter measuring the strength of the effect of the receptor layer is
found. Asymptotic and singular perturbation techniques are used to analyse asso-
ciation and dissociation kinetics, though the effect of the receptor layer need not be
small. Linear and nonlinear integral equations result from the analysis; explicit and
asymptotic solutions are constructed for physically realizable cases. In addition,
effective rate constants are derived that illustrate the combined effects of transport
and the receptor layer on the measured rate constants. All these expressions provide
a direct way to estimate rate constants from BIAcoreTM binding data.

c© 2001 Society for Mathematical Biology

1. INTRODUCTION

In biological systems, many chemical reactions of interest occur between two
components, one of which is confined to a surface (often receptors on a cell mem-
brane) while the other floats freely in solution (herein called theanalyte). For
instance, newborns receive immunoglobulins from mother’s milk through binding
to receptors on intestinal epithelial cells (Raghavanet al., 1994). Signaling and
adapter molecules in the cytoplasm interact with the cytoplasmic tails of receptors
embedded in the plasma membrane (Goldstein and Dembo, 1995). Gene expres-
sion is significantly influenced by DNA-protein interactions in these geometries
(Szaboet al., 1995).

With few exceptions (Goldstein and Wofsy, in preparation;Schuck, 1996;
Yarmushet al., 1996) it has been customary to model such reactions as occurring
on the biological surface by imposing a reacting boundary condition on a transport
equation for the analyte (Daviset al., 1995; Myszkaet al., 1998; Edwards, 1999,
2000; Edwardset al., 1999; Masonet al., 1999). A truer model would include a
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smallreceptor layerin which the receptor sites reside and through which the ligand
must diffuse to reach them. Due to the thinness of such layers, the surface-reaction
approximation has been preferred due to its simplicity.

The thinness of the layer is not the key issue, however. Even a thin layer will
significantly affect the reaction if it is nearly impermeable to the ligand. The more
relevant consideration is the time it takes for ligand molecules to diffuse through the
receptor layer and reach a receptor site. If this time scale is small (in some relative
sense), a surface-reaction model is appropriate. In this manuscript we derive the
key dimensionless groupD which determines the effect of the layer.

We specialize to the case of the BIAcoreTM , which is a surface plasmon reso-
nance (SPR) device for measuring rate constants; however, the results can easily
be extended to biological systems of interest (Edwards, 2000). The configuration
of the BIAcoreTM is described in great detail elsewhere (Karlssonet al., 1994; Sz-
aboet al., 1995). For our purposes, it is sufficient to know that the device consists
of a rectangular channel through which the analyte flows. The receptor is embed-
ded in a thin dextran matrix attached to the ceiling of the channel, and real-time
data can be gathered as the experiment progresses.

The BIAcoreTM is modeled as a coupled system between a convection-diffusion
equation in the flow and a reaction-diffusion equation in the dextran layer. Af-
ter scaling, we derive results in the case of smallDamk̈ohler numberDa, which
measures the effect of transport. Since including the layer also involves adding a
transport effect, we find that the correction from the dextran layer occurs atO(Da).
We obtain explicit solutions for the bound state as well as expressions where the
rate constants obtained from such a system can be interpreted in terms of the ‘true’
rate constants (i.e., the ones if both reactants were in solution).

In addition, we consider the case where Da= O(1) and transport and reaction
effects balance. A nonlinear integral equation results, but the rate constants can
easily be estimated from a short-time solution for the bound-state concentration.
We consider not only association, but also dissociation experiments. We construct
explicit solutions in the case where the initial density of empty receptors is uniform.
These results should help experimentalists design and interpret the results of their
trials, as well as provide insight into how receptor layers affect biological systems.

2. GOVERNING EQUATIONS

We consider the BIAcoreTM to be divided into two regions: the open channel
(considered to be the the region 0≤ x̃ ≤ L, 0 ≤ ỹ ≤ Hf , where the subscript ‘f’
stands for ‘flow’), and the dextran layer (considered to be the the region 0≤ x̃ ≤ L,
0 ≥ ỹ ≥ −Hd, where the subscript ‘d’ stands for ‘dextran’). For the purposes of
this paper, the dextran layer is considered to be a solid in that there is no appreciable
flow in it.

This consideration imposes a no-slip condition on the flow at the dextran–fluid
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interfaceỹ = 0. Since there is already a no-slip condition at the wallỹ = Hf , the
flow is standard parabolic Poiseuille flow with maximal velocityV/4. Thus, the
equation for the concentratioñCf of the ligand in the channel is as follows:

∂C̃f

∂ t̃
= D̃f

(
∂2C̃f

∂ x̃2
+
∂2C̃f

∂ ỹ2

)
− V

ỹ

Hf

(
1−

ỹ

Hf

)
∂C̃f

∂ x̃
, (1)

whereD̃f is the molecular diffusion coefficient of the ligand in the flow. For now,
we take the initial concentration in the open channel to be an arbitrary constant:

C̃f(x̃, ỹ,0) = Cf,i . (2)

In practice, for an association experiment it would be zero, while for a dissociation
experiment it would be some equilibrium value. At the upstream end (x̃ = 0), we
have a prescribed constant concentrationCT:

C̃f(0, ỹ, t̃) = CT. (3)

In practice, for an association experiment it would be a specified value, while for a
dissociation experiment it would be zero. This upstream concentration will change
from run to run of the same experiment.

Since there is no convection in the dextran layer, the governing equation for the
concentrationC̃d of the ligand is as follows:

∂C̃d

∂ t̃
= D̃d

(
∂2C̃d

∂ x̃2
+
∂2C̃d

∂ ỹ2

)
−
∂ B̃d

∂ t̃
, (4)

whereD̃d is the molecular diffusion coefficient of the ligand in the dextran. Here
B̃d(x̃, ỹ, t̃) is the concentration of the receptor in the dextran.

Across the interfacẽy = 0, the fluxes (which arise only from diffusion) must
balance:

D̃f
∂C̃f

∂ ỹ
(x̃,0, t̃) = D̃d

∂C̃d

∂ ỹ
(x̃,0, t̃). (5a)

We must also have a condition on the concentration itself atỹ = 0. At the interface,
the concentration of the ligandin the fluidmust be continuous. However, in the
dextran layer liquid exists only in some volume fractionφ (called thepartition
coefficient). Therefore, thetotal volume concentration in the dextran layer must be
reduced by that factor:

φC̃f(x̃,0, t̃) = C̃d(x̃,0, t̃). (5b)

There is no flux through the solid surface adjoining the dextran layer:

D̃d
∂C̃d

∂ ỹ
(x̃,−Hd, t̃) = 0. (6)



304 D. A. Edwards

Finally, we must describe the reaction by specifying∂ B̃/∂ t̃ . The bound state
evolves according to a bimolecular reversible reaction. However, the production
term must be modified somewhat. First, since the reaction occurs inside the pores
only, it is thefluid concentration ofC̃d that is important in the reaction, so we
must divide by the partition coefficient. Second, diffusion of the ligand through
the dextran may be inhibited by the tortuosity of the pores. This effect is modeled
through thesteric hindrance factor a, which is scaled so thata = 1 corresponds to
diffusion through a substance with no pores anda = 0 corresponds to no diffusion
because of the shape or size of the pores. In summary, the governing equation for
the reaction is given by

∂ B̃d

∂ t̃
= k̃on

[
a

φ

(
R̃T

Hd
− B̃d

)
C̃d− K̃ B̃d

]
, K̃ =

k̃off

k̃on

, (7)

wherek̃on andk̃off are rate constants, and̃K is the affinity constant. In keeping with
the surface-reaction approximation, values for receptor site densityR̃T are usually
given in units of area concentration. To convert to the volume concentrations we
use here, we simply divide by the widthHd of the dextran layer.

In addition, we need an initial condition for̃Bd:

B̃d(x̃, ỹ,0) = B̃d,i(x̃, ỹ). (8)

In practice, for an association experiment it would be zero, while for a dissociation
experiment it would be a steady-state value, which we shall calculate later.

2.1. Reducing to the previous case.We note that we may always relate our
work here to the surface-reaction approximation by definingB̃, which has units of
area concentration, to be the accumulated bound state integrated across the dextran
layer:

B̃(x̃, t̃) =
∫ 0

−Hd

B̃d(x̃, ỹ, t̃)dỹ.

If we integrate (4) and (7) across the dextran layer and take the limit asHd → 0
using the mean value theorem, we obtain

D̃f
∂C̃f

∂ ỹ
(x̃,0, t̃) =

∂ B̃

∂ t̃
,

∂ B̃

∂ t̃
= k̃ona[(R̃T − B̃)C̃f](x̃,0, t̃)− k̃off B̃, (9)

where we have used (5a), (b) and (6). Since a surface has no steric hindrance,
we takea = 1. Equations (9) exactly match the equations in the surface-reaction
approximation (Edwards, 1999).
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3. SCALING

Next we must choose suitable scales in order to introduce dimensionless vari-
ables. Clearly the time scale of interest is the reaction time scale; it can be shown
that only the flow equilibrates on the shorter convective and diffusive time scales.
We introduce a boundary layer scaling forỹ in the flow, since it can be shown that
ligand transport is relevant only in the unstirred layer near the interface (Edwards,
1999).

We consider an association experiment, soCf,i = CT 6= 0. In addition, we
neglect the steric hindrance factor, so we takea = 1. We normalize the ligand
concentrations by the upstream concentration and the bound state concentration by
the initial number of receptor sites:

x =
x̃

L
, yf = Pe1/3 ỹ

Hf
, t = k̃onCT t̃, Cf(x, yf, t) =

C̃f(x̃, ỹ, t̃)

CT
,

(10a)

Pe=
V/L

D̃f/H2
f

=
diffusive rate of mass transfer in flow

convective rate of mass transfer in flow
. (10b)

Hereyf is a boundary-layer variable because Pe� 1 (for more details on the sizes
of relevant parameters, see the Appendix).

For the dextran layer, we have a given dimension, namelyHd, which we use to
normalizeỹ. In addition, motivated by (5b), we note that the maximum value ofC̃
in the dextran layer isφCT. Therefore, we choose the following scalings:

yd =
ỹ

Hd
, Cd(x, yd, t) =

C̃d(x̃, ỹ, t̃)

φCT
, (11a)

Bd(x, yd, t) =
Hd

R̃T

B̃d(x̃, ỹ, t̃), Bd,i(x, yd) =
Hd

R̃T

B̃d,i(x̃, ỹ). (11b)

Note that we have scaled they-variable in the flow region with the Peclét number
determined by the dynamics, while in the dextran layer we have scaled by the
device-determined width.

Substituting (10a), (b), (11a) and (b) into (7) and (1), we obtain, to leading orders,

∂Bd

∂t
= [(1− Bd)Cd− K Bd], K =

K̃

CT
, (12)

konPe1/3∂Cf

∂t
=
∂2Cf

∂y2
f

− yf
∂Cf

∂x
, kon =

k̃onCTL

V
, (13)

where in (13) we have used the fact that Pe� 1 in eliminating thex-diffusion
term. FromEdwards(1999) we have thatkonPe1/3

� 1, and hence we are in the
steady state of the flow transport equation.
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Substituting (10a) and (10b) into (4) yields the following:

∂2Cd

∂y2
d

= DaD

(
∂Bd

∂t
+ R−1∂Cd

∂t

)
, (14)

R=
R̃T

CT Hdφ
=

concentration of receptors

concetration of analyte
, (15a)

Da=
k̃onR̃T

D̃f/(HfPe−1/3)
=

reaction ‘velocity’

diffusion ‘velocity’ in diffusive boundary layer
, (15b)

D =
D̃f/(HfPe−1/3)

φ D̃d/Hd

=
diffusion ‘velocity’ in diffusive boundary layer

diffusion ‘velocity’ in dextran
, (15c)

where we have used the fact thatHd � L to eliminate thex-diffusion term. We
see from the Appendix thatR � 1, and hence we are in the steady state for the
diffusion part of (14).

Here Da is theDamk̈ohler number. Careful readers will note that we could have
combined DaD into a single new Damk̈ohler number relating the reaction velocity
to the diffusive velocity in the receptor layer. However, the Damköhler number here
is the same one that appears in the surface-reaction approximation when there is
no receptor layer. Thus, to reproduce the surface-reaction approximation we need
take onlyD→ 0 to obtain the limitHd→ 0. D measures the effect of the dextran
layer. Note that it involves not only the ratio of the widths of the regions, but also
diffusive effects as well through the ratiõDd/D̃f , which is sometimes called adrag
coefficient(Yarmushet al., 1996).

We conclude by substituting (10a), (b), (11a) and (b) into the relevant boundary
data (3), (5a), (b), (6) and (8):

Cf(0, yf, t) = 1, (16)

∂Cd

∂yd
(x,0, t)= D

∂Cf

∂yf
(x,0, t), (17a)

Cf(x,0, t)= Cd(x,0, t), (17b)

∂Cd

∂yd
(x,−1, t)= 0, (18)

Bd(x, yd,0)= Bd,i(x, yd), (19)

where we have used (15c). In addition, sinceyf is a boundary layer variable, we
must have the condition thatCf matches the saturated value of the bulk flow as we
exit the layer:

Cf(x,∞, t) = 1. (20)
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Finally, we consider the measurements that are actually taken by the BIAcoreTM .
Technically, the measurement is a response signal of an evanescent wave that pen-
etrates into the dextran layer. This response is then averaged over the scanning
range, which is a subinterval[xmin, xmax] of the channel length. Due to the nature
of the instrument, the signal decays with distance away from the surfacey = −1
(Liedberget al., 1993; Schuck, 1996). Thus the dimensionless signalB̄d is given
by

B̄d(t) =
1

xmax− xmin

∫ xmax

xmin

[∫ 0

−1
K(yd)Bd(x, yd, t)dyd

]
dx,

whereK(yd) is the decaying kernel. In this manuscript we assume that the kernel
decays over a region much wider than the dextran layer, so we may take it to be
equal to 1. Therefore, we have

B̄d(t) =
1

xmax− xmin

∫ xmax

xmin

[∫ 0

−1
Bd(x, yd, t)dyd

]
dx. (21)

4. SMALL DA , GENERAL RESULTS

In order to obtain accurate rate constant measurements from the BIAcoreTM , it is
desirable to minimize the effects of transport so that the reaction occurs uniformly
along the channel length. This corresponds to the case where Da→ 0 (Edwards,
1999; Edwardset al., 1999). Here we shall calculate the firsttwo orders of the
bound concentration in the limit of small Da, including the effect of the dextran
layer. This will allow us to compare and contrast the effects of transport and the
layer in the calculation of rate constants.

If we are to calculate the next order in a perturbation expansion, the question
immediately arises: what is the perturbation parameter? Equations (13) and (14)
give us two choices:konPe1/3 and Da. It can be shown (Edwards, 1999; Edwardset
al., 1999) that Da is larger, and hence should be used as the perturbation parameter.
Therefore we expand our expressions in the following forms:

Cf(x, yf, t)= Cf,0(x, yf, t)+ DaCf,1(x, yf, t)+ o(Da), (22a)

Cd(x, yd, t)= Cd,0(x, yd, t)+ DaCd,1(x, yd, t)+ o(Da), (22b)

Bd(x, yd, t) = Bd,0(x, yd, t)+ DaBd,1(x, yd, t)+ o(Da). (23)

Substituting (22a), (b) and (23) into (14), (18), (17b), (a), (13), (20), (16), (12)
and (19), we have, to leading two orders:

∂2Cd,0

∂y2
d

= 0,
∂Cd,0

∂yd
(x,−1, t) = 0, (24a)
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Cf,0(x,0, t) = Cd,0(x,0, t), (24b)

∂Cd,0

∂yd
(x,0, t) = D

∂Cf,0

∂yf
(x,0, t), (25)

yf
∂Cf,0

∂x
=
∂2Cf,0

∂y2
f

, Cf,0(x,∞, t) = 1, Cf,0(0, yf, t) = 1, (26)

∂Bd,0

∂t
= (1− Bd,0)Cd,0− K Bd,0, Bd,0(x, yd,0) = Bd,i(x, yd), (27)

∂2Cd,1

∂y2
d

= D
∂Bd,0

∂t
,

∂Cd,1

∂yd
(x,−1, t) = 0, (28a)

Cf,1(x,0, t) = Cd,1(x,0, t), (28b)

∂Cd,1

∂yd
(x,0, t) = D

∂Cf,1

∂yf
(x,0, t), (29)

yf
∂Cf,1

∂x
=
∂2Cf,1

∂y2
f

, Cf,1(x,∞, t) = 0, Cf,1(0, yf, t) = 0, (30)

∂Bd,1

∂t
= (1− Bd,0)Cd,1− Bd,1Cd,0− K Bd,1, Bd,1(x, yd,0) = 0. (31)

Note thatD appears only at first order, becauseD arises from essentially another
transport effect, and the leading order of our system will reduce to the well-mixed
case. Thus, even matrices with highD values can be ignored if the experiment is
designed with a small value of Da.

Solving (24a) and (b), we obtain

Cd,0(x, yd, t) = Cf,0(x,0, t). (32)

Therefore, we note from (32) that since the reaction time scale is slower than the
diffusion time scale, on the reaction time scale the diffusion is instantaneous and
to leading order the concentration in the dextran layer is uniform. Thus to leading
order the dextran layer behaves like a surface, since there is no variation in the
yd-direction.

Substituting (32) into (25), we have the following:

∂Cf,0

∂yf
(x,0, t) = 0. (33)

Solving (26) and (33) yields the constant solutions

Cf,0(x, yf, t) = 1 H⇒ Cd,0(x, yd, t) = 1, (34)
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where we have used (32) again. Substituting (34) into (27) and solving, we obtain

Bd,0(x, yd, t) =
1− e−αt

α
+ Bd,i(x, yd)e

−αt , α = K + 1. (35)

Therefore, the measured quantity indicated in (21) would be

B̄d,0(t) =
1− e−αt

α
+ B̄d,ie

−αt . (36)

The steady state of (36) is α−1, and it can be shown that this is always the steady
state, no matter the size of Da. Thus we may always obtain an estimate forK
simply by letting the experiment run to completion.

Taking the derivative of (35) with respect tot , we have the following:

∂Bd,0

∂t
= e−αt

[1− αBd,i(x, yd)]. (37)

For algebraic simplicity, we define a new functionF0(x, yd, t):

∂2F0

∂y2
d

=
∂Bd,0

∂t
,

∂F0

∂yd
(x,−1, t) = 0, F0(x,0, t) = 0. (38)

Substituting (37) into (28a) and using (38), we may solve to obtain

Cd,1(x, yd, t) = DF0+ g(x, t), (39)

whereg(x, t) is unknown.
Then evaluating (39) at the interface and using (28b) and (29), we have the fol-

lowing:

Cf,1(x,0, t) = g(x, t),
∂Cf,1

∂yd
(x,0, t) =

∂F0

∂yd
(x,0, t). (40)

To solve (30) and (40), we note that due to the convective nature of the flow, any
exit condition we impose will necessitate the insertion of a boundary layer about
x = 1. However, since this region is outside of the scanning range, it is not of
interest. Thus, we may embed the problem in a semi-infinite region inx and use
Laplace transforms inx to solve the problem. Since the quantity of interest is
Cf,1(x,0, t), the transform can be inverted relatively easily to yield

g(x, t) = −
1

31/30(2/3)

∫ x

0

∂F0

∂yd
(x − ξ,0, t)

dξ

ξ2/3
. (41)
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Note thatF0 is known, sog can be explicitly determined, in theory. Substitut-
ing (41) into (39), and using the result along with (34) in (31), we obtain

∂Bd,1

∂t
+αBd,1 = (1− Bd,0)

[
DF0−

1

31/30(2/3)

∫ x

0

∂F0

∂yd
(x− ξ,0, t)

dξ

ξ2/3

]
. (42)

However, there is a problem with (42). We note from (37) that F0 depends ont
only through the quantitye−αt , which is a solution of the homogeneous operator
in (42). Thus we are forcing the operator in (42) with a multiple of the homoge-
neous solution. This will lead to terms that behave likete−αt , which are similar in
form to a secular term in a two-timing problem. Of course, due to the fact thatBd,0

approaches anO(1) steady state, DaBd,1 � Bd,0 for all t , and so technically the
expansion does not fail at this order. However, this form should still give us pause,
since if we were to subtract off that steady state, then fort = O(Da−1), the second
term in our expansion would be the same size as the displacement from the steady
state. The standard way to fix such a problem is to introduce a multiple-scale ex-
pansion. However, from the work inEdwards(1999) we know that though it is
possible to construct such an expansion, such an expansion is not illuminating.

5. MODERATE DA

We next focus on the case where Da= O(1). From (34) we note that we may
simplify our work if we introduce the following transformations:

Cf(x, yf, t) = 1−DaCf,1(x, yf, t), Cd(x, yd, t) = 1−DaCd,1(x, yd, t), (43)

where we choose the minus sign sinceCf andCd must be less than their saturation
values. With these substitutions, our system will be exactly in the form of the sys-
tem in Section4 for Cd,1 andCf,1, with the subscript ‘1’ replaced by the subscript
‘1’ throughout.

The boundary conditions in (28a) and (b) still hold. However, since there is no
longer any expansion forBd, the operator in (28a) becomes

∂2Cd,1

∂y2
d

= −D
∂Bd

∂t
, (44)

where the right-hand side is now unknown and the negative sign arises from our
substitutions in (43). However, our trick in (38) works, with minor modifications.
If we now define

∂2F1
∂y2

d

=
∂Bd

∂t
,

∂F1
∂yd

(x,−1, t) = 0, F1(x,0, t) = 0, (45)
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then the solution of (44) and the boundary conditions in (28a) and (b) is

Cd,1(x, yd, t)=−[DF1 + g(x, t)], (46a)

g(x, t)=−
1

31/30(2/3)

∫ x

0

∂F1
∂yd

(x − ξ,0, t)
dξ

ξ2/3
. (46b)

Substituting (43), (46a) and (b) into (12), we obtain

1−
1

1− Bd

(
∂Bd

∂t
+ K Bd

)
= Da

[
1

31/30(2/3)

∫ x

0

∂F1
∂yd

(x − ξ,0, t)
dξ

ξ2/3
−DF1

]
.

(47)

In contrast to (42), equation (47) is nonlinear. It is difficult to solve explicitly,
but we may glean the information we require (namely the rate constants) more
easily by obtaining a small-time linear asymptote for the solutionBd. We do so by
assuming an expansion of the form

Bd(x, yd, t) = Bd,i(x, yd)+ βd(x, yd)t + o(t), t → 0. (48)

With such a substitution, we simply define a new variableF1(x, yd) in the following
manner:

∂2F1

∂y2
d

= βd,
∂F1

∂yd
(x,−1) = 0, F1(x,0) = 0. (49)

Then substituting (48) and (49) into (47), we obtain, to leading order int ,

1−Bd,i−(βd+K Bd,i) = Da(1−Bd,i)

[
1

31/30(2/3)

∫ x

0

∂F1

∂yd
(x−ξ,0)

dξ

ξ2/3
−DF1

]
,

(50)

which is again an unwieldy equation, though it is linear. In order to get at least one
result, we will consider the simple, but physically most important, case whereBd,i

is a constant in Section6.3.

6. CONSTANT I NITIAL STATE

6.1. General remarks on effective rate constants.If the initial state is constant
and Da� 1, we may rewrite our solutions in terms of effective rate constants.
In such a formulation, the integral equation forBd is replaced by an ODE for̄Bd

which is good toO(Da). Such a form is useful because experiments can usually
be designed with Da� 1, and commercially available data-fitting software can



312 D. A. Edwards

more easily estimate the rate constants by fitting the data curve to the solution of
an ODE.

Before considering the case discussed here, we present some general remarks on
systems with receptor layers. We consider a system similar to that in the rest of the
manuscript, but more arbitrary in the spatial domain:

LdCd = DaD
∂Bd

∂t
, x ∈ Rd; FdCd = 0, x ∈ ∂Rd,n,

LfCf = 0, x ∈ Rf; FfCf = 0, x ∈ ∂Rf,n,

Cf = Cd,
∂Cd

∂n
= D

∂Cf

∂n
, x ∈ ∂Rd,f,

∂Bd

∂t
= (1− Bd)Cd− K Bd, x ∈ Rd,

where∂/∂n refers to the normal derivative,L is a linear operator,F is an affine
operator, the subscript ‘n’ refers to a nonreacting boundary (in our case,ỹ = −Hd

and ỹ = Hf), and the double subscript ‘d, f’ means that boundary shared by the
flow and the receptor layer (in our case,ỹ = 0).

We take the case where Da� 1 and assume thatL andF are independent of
Da. Then our previous scalings yield the analogous equations for the leading two
orders:

LfCf,0 = 0, x ∈ Rf; Ff,0Cf,0 = 0, x ∈ ∂Rf,n; (51)

LdCd,0 = 0, x ∈ Rd; Fd,0Cd,0 = 0, x ∈ ∂Rd,n; (52a)

Cf,0 = Cd,0,
∂Cd,0

∂n
= D

∂Cf,0

∂n
, x ∈ ∂Rd,f; (52b)

LdCd,1 = D
∂Bd,0

∂t
, x ∈ Rd; (53a)

Fd,1Cd,1 = 0, x ∈ ∂Rd,n; (53b)

LfCf,1 = 0, x ∈ Rf; Ff,1Cf,1 = 0, x ∈ ∂Rf,n, (54a)

Cf,1 = Cd,1,
∂Cd,1

∂n
= D

∂Cf,1

∂n
, x ∈ ∂Rd,f; (54b)

∂Bd

∂t
= (1− Bd)(Cd,0+ DaCd,1)− K Bd+ O(Da2), x ∈ Rd, (55)

whereF0 andF1 are the corresponding pieces of the operatorF . SinceF is affine
and independent of Da,F1 must be linear.

If the solutionCd,0 of (52a) and (b) is uniform in∂Rd, the leading order of (54a)
and (b),

∂Bd,0

∂t
= (1− Bd,0)Cd,0− K Bd,0, x ∈ Rd,



Receptor Layer and Rate Constants 313

is a function only of time, and henceBd,0 is a function of time only. Then, since
bothLd,1 andFd,1 are linear, we may write

Cd,1(x, t) =
d Bd,0

dt
hd(x), Cf,1(x, t) =

d Bd,0

dt
hf(x), (56)

wherehd andhf satisfy (53b), (54a) and (b), and

Ldhd = D, x ∈ Rd. (57)

Substituting (56) into (55) and rearranging, we have

∂Bd

∂t
−Da(1−Bd,0)

d Bd,0

dt
hd = (1−Bd)Cd,0−K Bd+O(Da2), x ∈ Rd. (58)

We define the average ofB in the usual way:

B̄d(t) =
1

|Rd|

∫
Bd(x, t)d(Rd),

where|Rd| is the area ofRd. Averaging (58), we obtain

dB̄d

dt
=
(1− B̄d)Cd,0− K B̄d

1− Da(1− B̄d)h̄d
+ O(Da2), x ∈ Rd, (59)

which is exactly the form inEdwardset al., 1999. Thus, the effect of the receptor
layer (incorporated only in̄hd) decouples from that of the transport (incorporated
only in Da). In the absence of transport, we have that Da= 0, and (56) reduces to
the standard ordinary differential equation governing the reaction.

When Da6= 0, transport slows the reaction, the denominator increases, and hence
the observed rate constants are smaller than the true values. Since 1− B̄d term is
the average concentration of vacant receptor sites available for rebinding, one may
express the effective rate constants in terms of rebinding probabilities (Edwardset
al., 1999).

6.2. Specific results, small Da.Now we return to the BIAcoreTM geometry
whenBd,i(x) is a constantBd,i . In this case, (35) becomes

Bd,0(x, yd, t) =
1− χe−αt

α
, χ = 1− αBd,i . (60)

SinceBd,0 depends only ont (as postulated in Section6.1), the averaged quantity
will be the same asBd,0 itself:

B̄d,0(t) =
1− χe−αt

α
. (61)
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Figure 1. B̄d,1 vs t̃ for (in decreasing order of thickness)D = 0, 1/4, 1/2, 3/4, 1. Note
the true correction to the well-mixed case will be Da times this result.

Substituting our results into (38), we have the following:

F0(x, yd, t) =
χyd(yd+ 2)e−αt

2
. (62)

Substituting (60) and (62) into (42) and solving subject to the initial condition
in (31), we obtain

Bd,1(x, yd, t) = −
χe−αt

α

[
χ(e−αt

− 1)

α
− Kt

]{
D

[
yd(yd+ 2)

2

]
−

32/3x1/3

0(2/3)

}
.

(63)

Substituting (63) into (21) yields

B̄d,1(t) =
χe−αt

α

[
χ(e−αt

− 1)

α
− Kt

][
D

3
+

35/3(x4/3
max− x4/3

min)

40(2/3)(xmax− xmin)

]
. (64)

Note that the last bracketed term is separated into the correction from the layer (the
first term) and the correction from transport along the channel (the second term).

Figure1 shows a graph of̄Bd,1 [as given by (64)] vs thedimensionaltime t̃ (in
seconds), since this is how the constants would be determined in a given experi-
ment. Our parameters listed in Table1 are fromEdwards(1999); the appendix of
that work may be consulted for appropriate ranges of the parameters. Each curve
represents a different value ofD; note that asD increases, the effect of the layer
increases, causing a larger deviation from the well-mixed result. However, in all
cases the error is small, since the expressionB̄d,1 must still be multiplied by Da to
obtain the true correction.
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Table 1. Parameter values for Figs 1 and 2.

Parameter Value Parameter Value

Bi 0 t 10−3 t̃ s−1

CT (mol cm−3) 10−11 xmax 7.92× 10−1

Da 10−1 xmin 2.08× 10−1

K 1 α 2
k̃on (cm3 mol−1 s−1) 108 χ 1

Now we turn to the effective rate-constant approach. Substituting (56) into the
operator in (28a), we obtain

d2hd

dy2
d

= D.

Thus, using an analogous technique to that used in the end of Section4 and in
deriving (62), we have

hd(x, yd) =
Dyd(yd+ 2)

2
+ g(x), hf(x,0) = g(x),

∂hf

∂yd
(x,0) = 1.

Since F0 andhd are so similar, we see that in solving the above, we obtain the
braced expression in (63):

hd(x, yd) = D

[
yd(yd+ 2)

2

]
−

32/3x1/3

0(2/3)
,

which means that we can use (64) to obtainh̄d, keeping in mind that we extracted
a minus sign:

h̄d = −

[
D

3
+

35/3(x4/3
max− x4/3

min)

40(2/3)(xmax− xmin)

]
. (65)

This is the expression we use in our effective rate constant equation:

dB̄d

dt
=

1− α B̄d

1− Da(1− B̄d)h̄d
+ O(Da2). (66)

Figure2 shows the error between the leading-order solution (61) and the solution
to the effective rate-constant equation (66) vs time for various values ofD. Again,
asD increases, the effect of the layer increases, causing a larger deviation from the
well-mixed result.
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Figure 2. Difference between solution to (66) and (61) vst̃ for (in decreasing order of
thickness)D = 0, 1/4, 1/2, 3/4, 1.

6.3. Specific results, moderate Da.We conclude Section6 by examining the
moderate Da number case. The quantity in which we are truly interested isβ̄d,
which is given by

β̄d =
1

xmax− xmin

∫ xmax

xmin

∂F1

∂yd
(x,0)dx, (67)

where we have used (49). Hence it is easiest to work directly withF1 in (50):

1−αBd,i−
∂2F1

∂y2
d

= Da(1−Bd,i)

[
1

31/30(2/3)

∫ x

0

∂F1

∂yd
(x−ξ,0)

dξ

ξ2/3
−DF1

]
. (68)

The solution process for (68) is as follows. By taking Laplace transforms, one
can write (68) as an ODE forF̂1, the Laplace transform ofF1, which includes the
boundary conditiondF̂1/dyd(0) as a parameter. Note that the integral of the inverse
Laplace transform of this boundary condition is the only piece of information we
need. Therefore, the inversion process is relatively straightforward and we obtain

I[βd; x] =
χe−µx

µ

tanhλ

λ
[eµx
− 1− |P(4/3,−µx)| + |P(5/3,−µx)|], (69)

where

I[ f ; x] =
∫ x

0
f (ξ)dξ, µ =

1

3

[
Da(1− Bd,i)0(1/3) tanhλ

0(2/3)λ

]3

,

λ2
= DDa(1− Bd,i), (70a)
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andP is the normalized incomplete gamma function defined by

P(n/3,−µx) =
γ (n/3,−µx)

0(n/3)
=

1

0(n/3)

∫
−µx

0
e−ξξn/3−1 dξ. (70b)

Thus we have the following:

β̄d =
I[βd; xmax] − I[βd; xmin]

xmax− xmin
,

and hence it can be shown (Edwards, 1999) that

B̄d(t̃) ∼ Bi + St̃, S=
k̃onCT{I[βd; xmax] − I[βd; xmin]}

xmax− xmin
. (71)

We use the steady state to obtain an estimate forK . In order to calculate both rate
constants, we construct a linear fit to our small-time experimental data. Once we
have calculated the slopeSof that line, we solve (71) to obtaink̃on. It is important
to note that the relationship betweenS andk̃on is not linear, sinceβd also depends
on k̃on through the parameter Da. Then using our value forK , we may calculate
k̃off. We also note that in the limit thatD→ 0, we obtain

tanhλ

λ
= 1+ O(λ2) = 1+ O(D).

Therefore, for smallD the size of the correction is the same as that in previous
sections.

Using the small- and large-µ behavior of theP function, we can ascertain the
large- and small-̃kon behavior ofS. For smallk̃on, we have

S∼ k̃onCTχ, k̃on→ 0. (72a)

As expected, (72a) shows that if there is no forward reaction (k̃on = 0), the bound
concentration will not change (S= 0). For largek̃on, we have the following:

S∼
3

4
3χCTV

1
3 D̃

2
3
f (x

2
3
max− x

2
3
min)

2
1
3 (1− Bd,i)0

(
1
3

)
RTL

1
3 H

1
3

f (xmax− xmin)

, k̃on→∞. (72b)

The presence of a finite asymptote forS in the limit of large k̃on is physically
reasonable, since no matter how fast the reaction proceeds, the mass uptake will be
limited by the amount of unbound ligand available for assimilation. Note also that
equations (72a) and (b) are independent ofD.

Figure3 shows how the slopeS varies with the variablek for various values of
D. To plot our results, we again use the parameters fromEdwards(1999), which
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Figure 3.Svs log10k for (in decreasing order of thickness)D = 0, 1/4, 1/2, 3/4, 1.

Table 2. Parameter values for Fig. 3.

Parameter Value Parameter Value

Bi 0 RT (mol cm−2) 10−12

CT (mol cm−3) 10−11 V (cm s−1) 1
D̃f (cm2 s−1) 2.8× 10−7 xmax 7.92× 10−1

Hf (cm) 5× 10−3 xmin 2.08× 10−1

k 10−9k̃onmol s cm−3 χ 1
L (cm) 2.4× 10−1

are listed in Table2. Herek is a dimensionless variable introduced to stabilize
the numerical calculations. The asymptotes are the same for all graphs since (72a)
and (b) are independent ofD. Note that asD increases, the slope decreases for
moderate values ofk. Thus, except for very fast and very slow reactions, the effect
of the dextran layer is to slow the initial speed of the reaction. That is to be ex-
pected, since the dextran layer introduces another transport barrier. This transport
barrier is irrelevant in the cases where the reaction is infinitely fast or infinitely
slow.

7. DISSOCIATION EXPERIMENTS

We now make some remarks regarding dissociation experiments. These experi-
ments are usually run after an association experiment has reached steady state. We
note from (36) that regardless of the initial data for the association experiment, the
steady state is given byBd,0(x, yd,∞) = α

−1, and hence equation (19) is replaced
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by

Bd(x, yd,0) =
1

α
(73)

for the dissociation experiment. Note that this ensures that we are in the uniform
case detailed in Section6.

During the experiment, the external flow is emptied of all ligands, so equa-
tions (20) and (16) become

Cf(x,∞, t) = 0, Cf(0, yf, t) = 0.

Replacing the boundary conditions in (26) with the leading order of the above
yields the constant solution

Cf,0(x, yf, t) = 0 H⇒ Cd,0(x, yd, t) = 0. (74)

Since the time scales are not dependent on the initial data, we again see that diffu-
sion will occur fast enough that any ligand that dissociates will diffuse out of the
channel and be swept away quickly.

Substituting (74) into (27), we obtain

Bd,0(x, yd, t) =
e−Kt

α
, (75)

where we have used (73). Since the definition ofF0 does not depend on the specific
form of Bd,0, equations (39) and (41) still hold. However, using (74) in (28b), we
see that the equation analogous to (42) is

∂Bd,1

∂t
+K Bd,1 = (1−Bd,0)

[
DF0−

1

31/30(2/3)

∫ x

0

∂F0

∂yd
(x−ξ,0, t)

dξ

ξ2/3

]
. (76)

We note that only the left-hand side of (76) is different from (42).
Continuing to simplify (76) using Section6.2, we note that since

∂2F0

∂y2
d

=
∂Bd,0

∂t
= −K

e−Kt

α
,

we have that our derivation proceeds analogously to that before (62) and hence (63)
becomes

Bd,1(x, yd, t) =
Ke−Kt

α

(
t +

e−Kt
− 1

Kα

){
32/3x1/3

0(2/3)
− D

[
yd(yd+ 2)

2

]}
, (77)
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which again exhibits secular behavior ast → ∞. We may calculate the average
as in Section6.2, since the only change is to the coefficient of the braced quantity.
Thus, the equation analogous to (64) is

B̄d,1(t) = −
Ke−Kt

α

(
t +

e−Kt
− 1

Kα

)[
D

3
+

35/3(x4/3
max− x4/3

min)

40(2/3)(xmax− xmin)

]
. (78)

We now focus on the effective rate-constant work. In Section6.2 the derivation
of (65) was independent of the concentrationCd,0 in the dextran layer. There-
fore, (65) still holds in the dissociation phase. The only difference is that we must
use (74) instead of (34) in (59), so (66) becomes

dB̄d

dt
=

−K B̄d

1− Da(1− B̄d)h̄d
. (79)

Since the effective rate-constant work is independent of the value ofCd,0, the com-
bination of (59) and (65) holds in both association and dissociation experiments.

Finally, we focus on the case where Da= O(1). There are several notational
changes, but the general form of the solutions again remains the same. Our trans-
formations (43) become, motivated by (74),

Cf(x, yf, t) = DaCf,1(x, yf, t), Cd(x, yd, t) = DaCd,1(x, yd, t). (80)

The change of sign makes the equation analogous to (47)

1

1− Bd

(
∂Bd

∂t
+ K Bd

)
= Da

[
DF1 −

1

31/30(2/3)

∫ x

0

∂F1
∂yd

(x − ξ,0, t)
dξ

ξ2/3

]
.

(81)

Using theβd substitution again, we obtain

βd+ K Bd,i = Da(1− Bd,i)

[
DF1−

1

31/30(2/3)

∫ x

0

∂F1

∂yd
(x − ξ,0)

dξ

ξ2/3

]
. (82)

Continuing to simplify, we see that the equation analogous to (69) is

I[β1; x] = −
Ke−µx

αµ

tanhλ

λ
[eµx
− 1− |P(4/3,−µx)| + |P(5/3,−µx)|]. (83)

As in the previous section, we may show that

S∼
k̃off

K + 1
, k̃on→ 0, (84a)

S∼
34/3CTV1/3D̃2/3

f (x2/3
max− x2/3

min)

20(1/3)RTL1/3H1/3
f (xmax− xmin)

, k̃on→∞. (84b)
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8. EXPERIMENTAL CONSIDERATIONS

Now that the mathematical expressions have been calculated, it remains to in-
terpret them in an experimental context. Due to the fact that reactions occur on a
time scale slower than transport, the receptor layer in and of itself does not affect
measurements. That is, if one could construct an experiment where the flow was in-
finitely fast, the distribution of ligand along the channel would be uniform. Hence
diffusion into the dextran itself would be uniform and adjustment of the calculated
rate constants would not be necessary.

Thus, to minimize the effects of the dextran layer, one must first minimize trans-
port effects. This is done by setting the dimensionless parameter Da� 1, which is
equivalent to taking

V �
k̃3

onR̃3
T Hf L

D̃2
f

. (85)

Though the bound forV involves the unknown rate constantk̃on, one should be
able to obtain at least an order-of-magnitude estimate through even unadjusted cal-
culations. The balance is between the upper limit on the flow velocityV achieved
in the device vs the lower limit on the receptor densityR̃T needed to achieve a
readout from the BIAcoreTM that is strong enough to be usable.

Once Da has been reduced as much as possible, the next step is to reduce the size
of D, which can be achieved by taking

Hd�
φ D̃dH1/3

f L1/3

D̃2/3
f V1/3

. (86)

Clearly to achieve this bound one should use as thin a layer as possible. Other
considerations are to make the partition coefficient as near to 1 as possible and the
diffusion coefficient in the dextran not much smaller than the diffusion coefficient
in the flow. An interesting note is that the bound depends inversely onV1/3, which
in (85) we have tried to make as large as possible. Though clearly a balance must
be struck, reducing Da is of primary importance. Since the dependence ofD on
V is weaker than that of Da, this argues for keepingV as large as possible within
device tolerances.

Once the parameters have been adjusted to minimize the effects of the receptor
layer, equations (59) and (65) can be used to calculate the rate constants. Equa-
tion (59) is simply the standard evolution equation with a denominator that incor-
porates the effect of transport. Though technically only good in the limit of small
Da, a related equation has been shown to be accurate within a few percent in the
case of moderate and large Da (Edwards and Jackson, submitted).

In order to be more confident in the case when Da is not small, one can use linear
short-time fits of the data to estimate the rate constants. In the association case,
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one can use equations (69) and (71). In the dissociation case one uses (83) and the
fact that in this case

B̄d(t̃) ∼
1

α
+ St̃ . (87)

9. CONCLUSIONS

Estimates of rate constants for chemical reactions play a key role in enhancing the
understanding of certain biological systems. With the advent of SPR technology
and its application in various measurement devices, scientists can now track the
evolution of the bound state during a controlled experiment. Unfortunately, such
technological advances are useless without the necessary mathematical models to
interpret the data.

Previous models for receptor-ligand reactions, both within biological systems
and without, have treated the receptors as embedded on a surface, thus reducing
the reaction to a boundary condition for a transport equation. In truth, the receptors
are embedded in a thin layer above the surface. Hence a more correct mathemati-
cal model for the system is a convection-diffusion equation for the analyte coupled
across an interface to a diffusion-reaction equation in the receptor layer. By intro-
ducing proper dimensionless variables, we noted that the reaction occurs on a time
scale slower than that for transport.

There are two key dimensionless groups in the problem: the Damköhler number
Da, which measures the strength of transport effects, and the parameterD, which
measures the effect of the receptor layer. In the limit that Da→ 0, we reduce to the
standard well-mixed kinetic theory. We calculated the first-order correction in the
case that Da→ 0, and demonstrated that the correction due to the receptor layer
occurs at this order. We calculated general expressions for any initial data, as well
as explicit and effective rate constant approximations for uniform initial data. The
general expressions are good only fort = o(Da) due to the secular nature of the
underlying operator.

In the case where transport is more important and Da= O(1), we derived a
nonlinear integrodifferential equation for the concentration of the bound state. By
looking at the small-time asymptotic behavior of the data, we may construct es-
timates of the rate constants. We indicated how this small-time solution would
change as the rate constants varied, and we provided large- and small-k̃on behavior
of the small-time solution.

Our results indicate that the effects of the receptor layer occur only atO(Da),
which is usually small. However, sinceD need not be small, especially for dense
matrices, the effect of the receptor layer can be as large as the effects of transport.
By characterizing the relevant properties of the receptor layer in the single param-
eterD, we provide guidance on how to design trials to minimize the effect of the
receptor layer.
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NOMENCLATURE

Variables and Parameters.Units are listed in terms of length (L), moles (N), or
time (T). If the same letter appears both with and without tildes, the letter with a
tilde has dimensions, while the letter without a tilde is dimensionless. The equation
where a quantity first appears is listed, if appropriate.

a: steric hindrance factor (7).
B̃(·, t̃): bound ligand concentration on surface at position· and

time t̃ , unitsN/L2 (4).
C̃(x̃, ỹ, t̃): unbound ligand concentration at position(x̃, ỹ) and time

t̃ , unitsN/L3 (1).
D̃: molecular diffusion coefficient, unitsL2/T (1).

Da: the Damk̈ohler number, which measures the ratio of reac-
tion and diffusion effects (15b).

F : affine operator.
F(·): arbitrary function, variously defined (38).
f (·): arbitrary function, variously defined.

g(x, t): Dirichlet data, variously defined (39).
H : height of a portion of the channel, unitsL.

h(x, ·): function used in effective rate constant solution (56).
I[·; x]: integration operator, defined in (70a) as

I[ f ; x] ≡
∫ x

0
f (ξ)dξ.

K(yd): kernel of signal measurement operator.
K̃ : affinity constant for system, defined ask̃off/k̃on, units

N/L3 (7).
k̃off: dissociation rate, unitsT−1 (7).
k̃on: binding rate, unitsL3/(N T) (7).
L: linear operator.
L: length of the channel, unitsL.
n: arbitrary constant.

P(n/3,−βx): normalized incomplete gamma function (70b).
Pe: Pecĺet number for the system, which measures the

ratio of convective to diffusive effects, defined as
V H2

f /D̃f L (10b).
R: arbitrary region.
R̃T: receptor sites, unitsN/L2 (7).
S: slope of a line, unitsT−1 (71).
t̃ : dimensional time, unitsT (1).

V : four times the (maximal) velocity of flow at center of
channel, unitsL/T (1).

x: arbitrary position coordinate.
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x̃: dimensional measure of length along the channel, units
L (1).

ỹ: dimensional measure of height from dextran–flow inter-
face, unitsL (1).

Z: the integers.
α: dimensionless constant, defined as 1+ K (35).

βd(x, yd): term in expansion ofBd(x, yd, t) for smallt (48).
λ: dimensionless constant (70a).
µ: dimensionless constant (70a).
ξ : dummy variable.
φ: partition coefficient (5b).
χ : dimensionless constant (60).

Other Notation.

d: as a subscript, used to indicate the dextran layer.
f: as a subscript, used to indicate the flow region (1).
i: as a subscript, used to indicate the initial state of a quan-

tity (2).
max: as a subscript, used to indicate the right endpoint of the

scanning range.
min: as a subscript, used to indicate the left endpoint of the

scanning range.
n ∈ Z: as a subscript, used to indicate an expansion in Da (22a).

T: as a subscript, used to indicate the total value of a quan-
tity (3).

1: as a subscript, used to indicate a displacement (43).
¯ : used to denote the mean of the bound concentration over

a subset of dextran layer.
ˆ : used to indicate the Laplace transform of a quantity.
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APPENDIX

In Table 3 we specifically compile parameter values relevant to the new analysis
here; other parameters may be found in the appendix ofEdwards(1999). The
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Table 3. Parameter values from the literature.

Parameter

CT D̃d/D̃f Hd RT φ

Reference (10−11 mol/cm3) (10−5 cm) (10−12 mol/cm2)

Edwards (1995) 2–5
Johnsson (1995) 1–2
Karlsson (1994) 0.3–1
Löfås and Johnsson (1990) 1
Parsons and Stockley (1997) 0.3–1
Schuck (1996) 0.02–0.1 0.1–1 0.3–1
Yarmushet al. (1996) 0.25–40 0.04–0.12 1 0.25–4 0.1–0.25

Table 4. Calculated parameters.

Parameter Range

D 6.69× 10−4
≤ D ≤ 3.73× 102 (see note in text)

Pe 37.4≤ Pe≤ 4.16× 105

R 12.5≤ R≤ 1.6× 107

parameters in Yarmushet al. are for a bovine serum albumin/monoclonal antibody
system. The varying values ofHd in the literature arise at least partly from the
fact that the BIAcoreTM comes with various sensor chips, each having different
thicknesses of the dextran layer. In addition, the paper bySchuck(1996) contains
numerical simulations, and thus various values forD̃d/D̃f , Hd, andφ could be
employed.

Table4 shows the ranges of the dimensionless parameters in our analysis given
the parameters in Table 3 andEdwards(1999). We note that both Pe� 1 and
R � 1, as claimed. We make a brief remark about the upper bound ofD in the
table, which arises from taking a highly unlikely combination of parameters. If
instead of this combination, we take the value Pe= 3.71× 102 we use to plot our
graphs, the upper bound onHd from Johnssonet al. (1995), and the experimental
bounds fromYarmushet al. (1996), we obtain the upper bound

D = 7.19,

which is moderate, not large.
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