
Surface Reaction Near a Stagnation Point

By David A. Edwards

To measure rate constants while performing biomolecular interaction analy-
sis (BIA), scientists often use resonant mirror devices such as the IAsysTM.
A full mathematical model of the IAsysTM consists of a convection–diffusion
equation in a closed well with a reacting surface at the bottom. The flow in
the well is complex, but near the sensor, the qualitative nature of the reac-
tion can be analyzed by reducing to stagnation point flow. The concentration
of the reacting species in several cases is analyzed using singular perturbation
techniques. Linear and nonlinear integral equations result from the analysis;
explicit and series solutions are constructed for physically realizable cases.
These solutions, which include the effects of transport on the reaction, pro-
vide improved estimates for the rate constants from raw IAsysTM binding
data.

1. Introduction

The accurate measurement of rate constants is key to the understanding of
reactions in the biological and chemical sciences. If one or more of the re-
actants is not fixed in place, the effects of transport must also be considered.
In particular, when both reactants are embedded in a flow, the resulting

Address for correspondence: Prof. D. A. Edwards, Department of Mathematical Sciences, University of
Delaware, Newark, DE 19716-2553. E-mail: edwards@math.udel.edu

STUDIES IN APPLIED MATHEMATICS 105:1–29 1
© 2000 by the Massachusetts Institute of Technology
Published by Blackwell Publishers, 350 Main Street, Malden, MA 02148, USA, and 108 Cowley Road,
Oxford, OX4 1JF, UK.



2 D. A. Edwards

system has been well studied (for example, see the classical textbook [1]).
However, there have been fewer studies of the case when one of the reac-
tants is embedded on a surface. In an industrial setting, such systems occur
when one is trying to produce a reaction on a thin film—a so-called chemi-
cal vapor deposition (CVD) process [2–5]. In addition, gaseous components
diffuse through highly porous catalysts to react on “active sites” in fixed-
bed reactors [6]. Purification processes also utilize reactants embedded in
pipe walls [7].

In the biological realm, such surface–volume reactions are also im-
portant. For example, DNA–protein interactions in these geometries (in
particular, on the outside of a helical strip [8]) is a prime factor in gene ex-
pression [7]. Signaling and adapter molecules in the cytoplasm interact with
the cytoplasmic tails of receptors embedded in the cellular plasma mem-
brane [9]. Immunoglobulins are transmitted from mother to newborn via
mother’s milk through the mechanism of binding to receptors on intestinal
epithelial cells [10].

Resonant mirror technology allows the measurement of rate constants in
such surface–volume reactions; for a detailed introduction to the technology,
see [11]. A schematic of the IAsysTM, one popular measurement device, is
shown in Figure 1. One reactant (the analyte) is placed in solution in the
well, shown at right. The solution level is roughly 2 mm below the top of
the well, as shown. In general, the volume of fluid considered is between
50 and 200 µL [12, 13]. The other reactant (the receptor) is embedded in
a sensor surface at the bottom of the well, indicated with dark shading at
the figure at left, which is a bottom view. The solution is agitated using a
vibrostirrer that has an elliptical annular cross section, indicated with light
shading. The center elliptical hole is 1 mm in the short direction. The stirrer
oscillates at 140 cycles/s in the direction shown at up to 0.5-mm amplitude.
The amplitude of the oscillation can be varied, and usually is set at around
85% of maximum [14].

As the reaction proceeds, a polarized light beam reflects off the sensor
surface and passes to a detector. Refractive changes caused by the binding of
the reactants are then averaged over the sensor surface to provide real-time
measurement of the bound-state concentration [7, 15].

To simplify the analysis, many authors decouple the reaction kinetics from
the transport dynamics [5, 16]. When one does so, the equations that re-
sult are simple first-order ODEs [17]. By separating these effects, these au-
thors assume that the concentration of the analyte is uniform near the sen-
sor surface. This is equivalent to assuming that reaction and transport oc-
cur on disparate time scales, so replacement analyte can be brought to the
sensor surface more quickly than the reaction can use it up. Unfortunately,
this decoupling occurs only when the parameter values are in certain ranges
[15, 18].
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Figure 1. IAsysTM device, bottom and side view.

Transport effects must be included in the analysis if the parameters do
not fall in these ranges [19], and there are several ways to incorporate these
effects [20]. Some authors prefer to introduce a new “mass transfer coeffi-
cient” to account for diffusive effects rather than modeling the full transport-
reaction system [15, 21]. The expressions for these mass transfer coefficients
may be directly derived from the full system of equations [8, 22].

In this article, we present a simplified model for the flow in the IAsysTM

device—stagnation point flow. This model for the flow will then allow us to
pose the problem as an analytically solvable convection–diffusion system for
the analyte C̃ with a reaction at the sensor surface. Because of the peculiar
nature of the stagnation flow, an exact solution may be found when the initial
density of receptor sites B̃i is uniform across the sensor surface. The solution
depends critically on the Damköhler number Da, which measures the ratio of
the time scales of transport to reaction.

It is most often the case that B̃i is, indeed, uniform. However, examina-
tion of the case where it is not, in addition to being interesting in its own
right, illustrates techniques that can be used to solve the system with more
complicated flow patterns. Using Da as a small parameter, we construct the
first-order correction to the reaction-limited case caused by small transport
effects. The solution thus obtained is in the form of a Mellin convolution,
but can be solved explicitly for analytic B̃i.

The regular perturbation expansion in Da shows classic signs of secularity
as t̃ → ∞. However, the resulting amplitude equation in a classic multiple-
scale expansion cannot be solved explicitly. Last, we make some remarks on
the case where B̃i is not uniform and Da = O�1�. In this case, a nonlinear in-
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Figure 2. First idealization of IAsysTM device.

tegral equation results, similar to the one in [18]. However, such an equation
can be solved numerically [23].

2. The flow

From our discussion in section 1, it is clear that the flow in the IAsysTM

will be very complicated. The first question to consider is whether the flow
remains laminar or becomes turbulent. Fortunately, the Reynolds number
Re for the system is around 300 (for estimates of all the relevant parameters,
see the Appendix). This value of Re implies bulk flow that can be treated
as inviscid, but still laminar. Because the concentration of the bound state
is averaged over the entire sensor surface (which is quite long compared to
its width), we reduce the problem to two dimensions by taking a slice along
the width of the device. In addition, we model the oscillating stirrer as a jet.
This simplification, although at first glance severe, will be more fully justified
later. Moreover, this simplification allows us to use potential theory for the
bulk flow, thus yielding a tractable problem.

The system that results is shown in Figure 2. We model the stirrer as cen-
tered in the device, thereby imposing symmetry about the centerline, shown
as the dashed line at the right of the figure. The reacting surface is shown
shaded, not black on the bottom of the figure. Although the geometry in
Figure 2 is simpler, there is a serious drawback for basic analytical solution
methods. In particular, the ligand that participates in the reaction resides in
an unstirred layer (thinner than the viscous layer) where diffusion and con-
vection share dominance. Hence, we must know the flow inside the viscous
boundary layer. In the geometry shown in Figure 2, the flow in the inner core
will not allow a simple boundary-layer solution.

Therefore, for a first attempt at modeling, we use an even simpler geome-
try, shown in Figure 3. We model the flow as stagnation point flow. Because
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Figure 3. Second idealization of IAsysTM device.

a relatively simple solution holds for the flow in the viscous boundary layer
for this case, we can explicitly obtain a solution that contains many of the
salient features of the over-all flow. In particular, we note that in Figures 2
and 3, as well as in the real system in Figure 1, a great deal of the sensor
surface is in close proximity to a stagnation point. Therefore, we expect our
solution to approximate closely the true solution, thus yielding reasonable es-
timates for the effects of transport in this device. (A very rough estimate for
the size of the effects can also be obtained through dimensional analysis, as
shown in section 3.3.)

We choose x̃ to be the direction along the sensor surface and ỹ to be the
distance above the sensor surface. The stagnation point is taken as the origin,
and, hence, we concern ourselves only with the region x̃ ≥ 0, ỹ ≥ 0. We take
ỹ = H to be the rest position of the stirrer. Because the stirrer oscillates
only in the ỹ-direction, we have ũỹ�0;H� = −V . (In the oscillating case, the
velocity is largest at the rest position.) For the length scale in the x̃-direction,
we choose the distance L between the stirrer and the centerline, which is
also the distance to the well wall. Thus, we introduce dimensionless variables
by letting

x̃ = Lx; ỹ = Hyp; ũỹ�x̃; ỹ� = Vuy�x; yp�: (1)

To maintain a balance in the conservation of mass equation, we must scale
the velocity in the x̃-direction as follows:

ũx̃�x̃; ỹ� =
VLux�x; yp�

H
:

Because the Reynolds number is large enough that we may use potential
flow, we quote the well-known result for flow about a stagnation point [24]:

ux = x; uy = −yp: (2)



6 D. A. Edwards

Although this solution satisfies the no-slip condition on uy at the boundary
yp = 0, it does not satisfy the no-slip condition on ux. Therefore, we must
introduce the standard boundary-layer variables:

yv = Re1/2 yp =
(
V

Hν

)1/2

ỹ; ux�x; yp� = vx�x; yv�; (3a)

Re = VH
ν
; (3b)

where the subscript “v” refers to the viscous boundary layer. If we do so, the
conservation of mass equation requires that

uy�x; yp� = Re−1/2 vy�x; yv� (4)

to obtain the balance

∂vx
∂x
+ ∂vy
∂yv
= 0: (5)

(Note that our scaling in (4) implies that the vertical velocity is very small.)
The remaining boundary layer equation is given in [25]:

vx
∂vx
∂x
+ vy

∂vx
∂yv
= ux�x; 0�dux

dx
�x; 0� + 1

Re r2

∂2vx
∂x2
+ ∂

2vx
∂y2

v
; (6a)

vx
∂vx
∂x
+ vy

∂vx
∂yv
= x+ ∂

2vx
∂y2

v
; r = L

H
; (6b)

where we have used (2). Here r is related to the aspect ratio of the well. The
relevant boundary and matching conditions are

vx�x; 0� = 0; vy�x; 0� = 0; vx�x;∞� = x; vy�x;∞� ∼ −yv:

Because of the condition on vx as y →∞, we try a solution of the form

vx = xf ′�yv� (7a)

in (5), which yields

vy = −f �yv�: (7b)

Substituting (7) into (6b) and the boundary and matching conditions, we
obtain

f ′′′ − �f ′�2 + ff ′′ + 1 = 0y f �0� = f ′�0� = 0; f ′�∞� = 1:

This is a Falkner–Skan equation.
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It will be shown that the transport layer is even thinner than the viscous
layer, and, hence, we need the values of f only near yv = 0. We note from
solution profiles that f ′ is linear near y = 0. Therefore, if we call the constant
of proportionality 2F (in other words, F = f ′′�0�/2), we have

f ′�yv� ∼ 2Fyv; f �yv� = Fy2
v ; yv → 0: (8)

Numerical calculations from Maple show that F ≈ 0:616.
We point out that solutions of the form (7) exist for the boundary-layer

equations (5) and (6a) only when ux�x; 0� is of the special form in (2). Al-
though we are interested in the behavior of the flow only near yv = 0, because
of the matching conditions as yv → ∞, we cannot rely upon simplistic se-
ries solutions for more complicated flows. In that case, more sophisticated
solution methods would be needed to find vx and vy .

3. Transport

3.1. Governing equations

Analyte transport is governed by the two-dimensional (2-D) convection–
diffusion equation

∂C̃

∂t̃
= D̃

(
∂2C̃

∂x̃2
+ ∂

2C̃

∂ỹ2

)
−
(
ũx̃
∂C̃

∂x̃
+ ũỹ

∂C̃

∂ỹ

)
; (9)

where D̃ is the molecular diffusion coefficient for the system. Because of
the symmetry of the flow problem about the ỹ-axis, we impose any necessary
conditions so this problem is symmetric as well. Once we do so, we can
restrict the domain of our problem to

0 ≤ x̃ ≤ L; 0 ≤ ỹ:
The boundary conditions at the binding surface ỹ = 0 are governed by the

reaction. The flux through the surface is equal to the rate of change of the
bound receptor concentration, which we denote by B̃�x̃; t̃�:

D̃
∂C̃

∂ỹ
�x̃; 0; t̃� = ∂B̃

∂t̃
: (10a)

Note that the flux contains only a diffusive component, because the fluid is
motionless at the sensor surface. The introduction of the new unknown B̃
requires the imposition of another boundary condition, which is given by the
mass action law. This states that the change in the bound state must be given
by a Malthusian dissociation term, as well as a bimolecular production term:

∂B̃

∂t̃
= k̃on

[�RT − B̃�C̃�x̃; 0; t̃� − K̃B̃]; K̃ = k̃off

k̃on

; (10b)
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where k̃on is the association rate constant and k̃off is the dissociation rate
constant for the system. In addition, RT is the concentration of receptor sites,
which is assumed to be uniform in x̃, and K̃ is the affinity or equilibrium
dissociation constant.

Next, we choose suitable scales in order to introduce dimensionless vari-
ables into (9). Because the diffusion coefficient is small, in most of the device
convection is the dominant method of transport. However, from (10a) and
the fact that the sensor surface is a streamline, we see that any changes in C̃
at the sensor surface must be caused by diffusion to the surface, which oc-
curs in a thin unstirred Lévêque boundary layer above the sensor. Therefore,
as a first choice of dimensionless variable in the ỹ-direction we choose yv,
the variable for the viscous boundary layer. With this choice, we can directly
compare the sizes of the viscous and diffusive boundary layers.

We normalize the concentration of the analyte by the bulk concentration
CT, which we assume to be constant. Spatial uniformity arises from the fact
that the convective time scale on which the concentration equilibrates is much
shorter than the time scales under consideration here. Because the IAsysTM

well has a finite volume, temporal uniformity is an appropriate approximation
only in the case where much more analyte is available than can possibly bind
with all the receptor sites. Otherwise, depletion effects will cause a reduction
in the bulk concentration over time.

Given the discussion above, we normalize C̃ by letting

Cv�x; yv; t̃� =
C̃�x̃; ỹ; t̃�
CT

: (11)

Substituting (11) into (9), we obtain

H

V

∂Cv

∂t̃
= 1

Sc Re r2

∂2Cv

∂x2
+ Sc−1 ∂

2Cv

∂y2
v
− xf ′�yv�

∂Cv

∂x
+ f �yv�

∂Cv

∂yv
; (12)

Sc = ν

D̃
= viscous effects

diffusive effects
;

where we have used (1), (3), and (7). Here Sc is the Schmidt number, which
is very large. Because Re is also much greater than 1, diffusion in the yv-
direction dominates.

However, because of the size of Sc, even that diffusion is a secondary
effect in the viscous layer. Thus, another boundary layer must be introduced,
a diffusive layer that is even smaller than the viscous layer. We expect the
analyte concentration to evolve in this region, so we create a time scale to
achieve a balance in (12). Therefore, we let

y = Sc1/3yv = Sc1/3 Re1/2 yp =
ỹ

HD

; HD =
H1/2D̃1/3ν1/6

V 1/2
; (13a)
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tD =
V

HSc1/3 t̃ =
V D̃1/3

Hν1/3
t̃; Cv�x; yv; t̃� = CD�x; y; tD�: (13b)

Here HD is a typical length scale for diffusion. Because Sc � 1, we may
expand f and f ′ using our forms for small arguments in (8). Doing so when
substituting (13) into (14), we obtain

∂CD
∂tD
= 1

Sc2/3 Re r2

∂2CD
∂x2
+ ∂

2CD
∂y2
− 2Fxy

∂CD
∂x
+ Fy2 ∂CD

∂y
: (14)

Clearly, the first term on the right-hand side of (14) is smaller than the other
terms, and hence diffusion in the x-direction may be neglected.

We normalize B̃ by the concentration RT, so we have

BD�x; tD� =
B̃�x̃; t̃�
RT

: (15)

Substituting (15) into (10) and using (13), we obtain

∂BD
∂tD
= D∂CD

∂y
�x; 0; tD�; (16a)

∂BD
∂tD
= kon

[�1− BD�CD�x; 0; tD� −KBD
]
; (16b)

D = CTHD

RT
= analyte available to react

receptor sites
;

= CTH
1/2D̃1/3ν1/6

RTV
1/2

;

kon =
k̃onCTHν

1/3

V D̃1/3
; K = K̃

CT
: (17)

Combining equations (16), we have the following:

∂CD
∂y
�x; 0; tD� = Da

[�1− BD�CD�x; 0; tD� −KBD
]
; (18)

Da = k̃onRT

D̃/HD

= reaction “velocity”
diffusion “velocity” in diffusive boundary layer

= k̃onRTν
1/6H1/2

V 1/2D̃2/3
:

Here Da is the Damköhler number for the system. Note that as the speed of
the reaction slows, Da→ 0. This corresponds to the case where the reaction
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is causing very little drain on the flux (see (18)), and, hence, transport to
the surface can keep up with the reaction. However, for faster reactions or
slower diffusion processes, Da increases, and the effects of transport must be
considered.

In the systems we study, one or both of D and Da are small. If D is small,
we have immediately from (16a) that the bound state does not evolve on
this time scale. If Da is small, then from (18) we see that to leading order
the concentration is undisturbed. Because there is no flux into the surface,
the reaction cannot proceed. In either case, the evolution of the bound state
must occur on a longer time scale.

Any balance must arise in either (16a) or (16b). Following the work in [18],
we force a balance in (16b) by letting

t = kontD = k̃onCT t̃; CD�x; y; tD� = C�x; y; t� + o�1�; (19a)

BD�x; tD� = B�x; t� + o�1�: (19b)

Substituting (19) into (16b), we obtain

∂B

∂t
= �1− B�C�x; 0; t� −KB: (20)

Therefore, as indicated by the scaling in (19), it is on the t time scale that
the forward reaction occurs. In order for t to represent a longer time scale,
kon = DDa � 1, which is true, because we are restricting ourselves to the
case where either of those parameters is small.

Substituting (19) into (14) and (16a), we have the following, to leading
order:

∂2C

∂y2
= 2Fxy

∂C

∂x
− Fy2 ∂C

∂y
; 0 ≤ x ≤ 1; 0 ≤ y; (21)

∂C

∂y
�x; 0; t� = Da

∂B

∂t
; (22)

where in (21) we have used the fact that kon and Re−1 are small. Note that the
transport equation is in steady-state form, and hence the analyte evolution is
attributable only to the surface reaction, as indicated by (22).

To complete the system, we must introduce additional boundary condi-
tions. For obvious reasons, there must be symmetry about the line x = 0, so
we have

∂C

∂x
�0; y; t� = 0: (23)
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As we exit the boundary layer, C must approach the bulk concentration,
which has been normalized to 1:

C�x;∞; t� = 1: (24)

Last, we must have an initial condition for the bound state, which at this
stage we take to be arbitrary:

B�x; 0� = Bi�x�: (25)

Because of the structure of the equations, it is useful to introduce the
following transformation:

C�x; y; t� = 1−DaC1�x; y; t�: (26)

C1 thus measures the disturbance in the concentration field because of the
surface flux, which is proportional to Da. Substituting (26) into (20)–(24), we
obtain

∂B

∂t
= �1− B��1−DaC1�x; 0; t�� −KB; (27)

∂2C1
∂y2
= 2Fxy

∂C1
∂x
− Fy2 ∂C1

∂y
; (28)

∂C1
∂y
�x; 0; t� = −∂B

∂t
; (29)

∂C1
∂x
�0; y; t� = 0; (30)

C1�x;∞; t� = 0: (31)

The form of the system (27)–(31) is now convenient for various types of
analysis.

3.2. Steady state

To gain some insight into the problem, we look at the steady states of equa-
tions (27)–(31), which we indicate by the subscript “s”. In the steady-state
case, the right-hand side of (29) becomes zero, so C1 obeys an unforced
equation with zero boundary conditions. Thus, C1 = 0. Using this fact in the
steady state of (27) and solving, we obtain

Bs�x� =
1
α
; α = 1+K: (32)

Note that K determines the final bound concentration.
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Conversely, for any experiment, a measurement of the long-time asymptote
of Bs�x� will yield a value for K. Rewriting (32) in dimensional terms, we have

Bs�x� =
CT

K̃ + CT

:

Thus, by running several experiments with varying values of CT and graph-
ing Bs versus CT, one can obtain an estimate for K̃. However, to get an
appropriate estimate for both k̃on and k̃off , we must have another piece of
information, which we derive in later sections.

In fact, a nonlinear regression is not necessary. If we take the ratio of the
steady-state bound concentration Bs to the injected concentration of unbound
ligands, we obtain the following:

Bs

CT
= 1

K̃
− Bs

K̃
:

Therefore, plotting a graph of Bs/CT versus Bs for various CT will give K̃ as
the negative reciprocal of the slope. Such graphs are called Scatchard plots
[26].

3.3. Dimensional analysis

We note that the deviation from a uniform value of C is driven by (22).
Because the variables are all dimensionless, to leading order the transport
effects depend only on Da. (In particular, it will be shown that for small
Da, the effects of transport are proportional to Da.) Note that there are two
types of parameters in Da: ones that are specific to the device (ν, H, V , and
RT) and ones that are specific to the reaction (k̃on and D̃).

Therefore, to compare two devices we need calculate only the parameters
in Da that are device specific. In particular, using the parameters in the
Appendix, we have that for the IAsysTM,

Da =
(

6:2 × 10−14 mol · s1/3

cm5/3

)
k̃on

D̃2/3
:

We compare the IAsysTM device with the BIAcoreTM measurement device.
Based on a similar measurement principle, the BIAcoreTM consists of a sensor
surface on a channel ceiling. The analyte then flows down the channel in a
recirculating loop [18]. Using the parameters from [18] for the BIAcoreTM,
we obtain

Da =
(

1:06× 10−13 mol · s1/3

cm5/3

)
k̃on

D̃2/3
:

Because Da is of comparable size for both devices, one might expect that
the effects of transport in each are similar. However, in the BIAcoreTM there
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are two measurement errors associated with transport. As described above
for the IAsysTM, there is a normal error associated with the fact that the two
species are not in equlibrium because of a disparity in time scales. We call
this a “normal error,” because it depends on the effects of the flux, which
acts in the direction normal to the sensor surface.

Second, there is a transverse error attributable to the fact that the analyte
concentration in the BIAcoreTM evolves nonuniformly in space, with a lower
analyte concentration downstream as molecules react with binding sites. We
call this a “transverse error,” because it involves a nonuniformity along the
sensor surface. However, we shall see that because of the nature of the stag-
nation flow presented here, there is no transverse error in this model.

4. Constant initial state

We now consider the case where the initial condition Bi�x� is a constant,
which we denote simply by Bi. Because the initial condition is uniform in
x, one may ask whether B is independent of x for all time. If so, we see
from (27) that C must be uniform in x. The boundary conditions (29)–(31)
are independent of x if B is, and, hence, we have a self-consistent ansatz.

Because (28) does not include t, we may separate the t- and y-dependences
by letting

C1�x; y; t� =
dB

dt
�t�C1�y�: (33)

Substituting (33) into (28), (31), (29), and (27), we obtain

d2C1

dy2
= −Fy2 dC1

dy
; C1�∞� = 0; (34a)

dC1

dy
�0� = −1; (34b)

dB

dt
= 1− αB

1+Da�1− B�C1�0�
: (35)

We note that (35) is directly analogous to the “effective rate constant” equa-
tions in [8, 22], which hold for small Da. However, in this system, the bound
state is always independent of x, so equation (35) is exact, rather than ap-
proximate. It holds for all Da, no matter the size, as long as D� 1.

Solving (34), we have

C1�y� =
1

32/3F1/3
0

(
1
3
;
Fy3

3

)
; (36)
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Figure 4. B versus t for K = 1 and Bi = 0. In decreasing order of thickness: Da = 0, 0.1, 0.5,
1, 3.

where 0 is the incomplete gamma function. For our purposes, we need only
C1�0�, which is given by

C1�0� =
0�1/3�
32/3F1/3

: (37)

Substituting (37) into (35), we obtain

dB

dt
= 1− αB

1+ γ�1− B� ; γ = Da0�1/3�
32/3F1/3

: (38)

Although (38) is the most useful form for analysis, we may solve it to obtain
an implicitly defined solution

e−γ�B−Bi�
(

1− αB
1− αBi

)1+γK/α
= e−αt; (39)

where we have used (25).
Figure 4 shows a graph of B versus t (as given by (39)) for various values of

Da. The thickest line is Da = 0, the case where there are no transport effects
at all. Note that as Da increases, the time needed for the bound state to
reach equilibrium also increases. This is because increasing Da corresponds
to slower transport to the reacting surface, which limits the rate of reaction.

Some discussion of the uniformity in the x-direction is warranted. Be-
cause we are considering the special geometry near a stagnation point, vy
is independent of x. This unusual phenomenon allows the uniform solution
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presented in this section to develop. (The same phenomenon also keeps the
width of the viscous layer independent of x [25].) Because the only depen-
dence on x occurs in the x-velocity, it may be ignored. Physically, exactly
enough new ligand is being brought to the surface by the convective stream
to replace any taken away during the reaction.

In the true IAsysTM device, vy must depend on x. For example, note from
Figure 2 that even in that diagram, ∂vy/∂x�1; y� = 0. However, an appre-
ciable portion of the sensor surface is in the neighborhood of the stagnation
point, and hence (39) should be a good approximation of the full solution.
Nevertheless, for more accurate models of the flow, more sophisticated meth-
ods must be used to solve the transport equations. The easiest way to intro-
duce these mathematical techniques is to consider the case where Bi�x� is
not constant.

5. Small Da, nonuniform case

5.1. Regular expansion

Now we examine the case where the initial condition is not uniform in x. To
preserve the symmetries we exploited in section 3, we require that, although
not uniform, the initial condition must be symmetric in x. Although we could
handle the case where Bi is odd in x, for simplicity, we also require that Bi
be even in x.

We specialize to the case of small Da where transport effects are small. To
achieve this parameter range, experimentalists should set up their apparatus
so that

Da� 1 H⇒ V � k̃2
onR

2
Tν

1/3H

D̃4/3
:

Of course, one must be able to construct an a priori estimate for k̃on to
obtain a usable threshold for V . Note that the bound depends on the square
of RT. The higher RT is, the easier it is to obtain good measurements from
the mirror. However, loading up the sensor with receptors will necessitate
increasing V to keep Da low. Thus, for RT large, it may be impossible to
increase V such that Da is very close to zero. Finally, we note that the bound
in the IAsysTM device is somewhat less sensitive on RT than the bound for
the BIAcoreTM device, which depends on R3

T [18].
In this case, C1 is really the second term in an expansion for C in the (now

perturbation) parameter Da. The equivalent series for B is given by

B�x; t� = B0�x; t� +DaB1�x; t� + o�Da�: (40)
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Substituting (40) into (27) and (25), we obtain

∂B0

∂t
= 1− αB0; B0�x; 0� = Bi�x�; (41a)

∂B1

∂t
= −�1− B0�C1�x; 0; t� − αB1; B1�x; 0� = 0: (41b)

A brief discussion of the operator in (41a) is appropriate. Rewriting the
equation with the parameters and independent variables in dimensional form,
we have

∂B0

∂t̃
= k̃onCT −

(
k̃onCT + k̃off

)
B0;

where we have used (10b), (7), and (19). Therefore, a plot of ∂B0/∂t̃ versus
B0 will yield a straight line with slope

S = −�k̃onCT + k̃off�: (42)

Because CT is a known quantity that can be varied from experiment to
experiment, a graph of S versus CT will be a straight line with slope k̃on and
intercept k̃off . Note also that because of the special form of (42), we do not
need to use the steady-state solution to provide information about K.

Solving (41a), we obtain

B0�x; t� =
1− e−αt
α

+ Bi�x�e−αt : (43)

Of course, this is the standard type of exponential behavior one would expect.
The IAsysTM device does not measure B, but rather the average of B over
the sensor surface. In our model system, the width of the device runs from
x = −1/3 to x = 1, so we may define the average as follows:

B̄�t� = 3
4

∫ 1

−1/3
B�x; t�dx: (44a)

However, the flow and initial condition are symmetric about the y-axis, so
the true average would be

B̄�t� = 3
4

[
2
∫ 1/3

0
B�x; t�dx+

∫ 1

1/3
B�x; t�dx

]
: (44b)

If we considered a case where B�x; t� was odd, only the second integral would
survive.

Substituting (43) into (44b), we have the following:

B̄0�t� =
1− e−αt
α

+ B̄ie
−αt : (45)
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Note that the x- and t-dependences separate in this problem. Therefore, we
see that (45) is the solution to the uniform problem (38) with Da = 0 and a
uniform initial condition given by B̄i.

Because our definition of t contains only k̃on, it is clear that from this
solution (which contains K in α) one can calculate the dimensional rate con-
stants easily. However, (45) holds exactly only in the case where Da = 0.
Therefore, we continue by constructing the next order in the perturbation
expansion. This new expansion will allow improved estimation of parameters
in the case where Da is small.

Substituting (40) and (43) into (29), we obtain

∂C1
∂y
�ξ; 0; t� = −e−αt[1− αBi�x�

]
: (46)

Therefore, even in the nonuniform case, there exists a uniform component of
the flux. Thus, we may decompose our solution into a uniform and nonuni-
form part. We also note that because of the structure of our problem, the
only time dependence in C1 must arise through the right-hand side of (46).
Therefore, we perform the following substitution:

C1�x; y; t� = e−αt�C1�y� + C2�ξ; y��; ξ = x3/2; (47)

where we introduce the variable ξ in order to simplify some algebra. Here
C1 is the solution given by (36).

Substituting (40) into (28), (41b), (31), and (46), we have the following:

∂2C2

∂y2
= 3Fξy

∂C2

∂ξ
− Fy2 ∂C2

∂y
; C2�ξ;∞� = 0; (48)

∂B1

∂t
= −�1− B0�e−αt�C1�0� + C2�ξ; 0�� − αB1 (49a)

C2�ξ; 0� = − eαt

1− B0

(
∂B1

∂t
+ αB1

)
− C1�0� ≡ g�ξ�; (49b)

∂C2

∂y
�ξ; 0� = αBi�ξ�H�1− ξ�: (50)

Note that in (49b) g is a function only of ξ because the dependence of
B1 on t will be determined totally through its interaction with C2 in (49a).
Substituting (37) into (49b) and solving for B1, we obtain

B1�x; t� = −e−αt
{

1− e−αt
α

[
1
α
− Bi�x�

]
+ tK
α

}[
0�1/3�
32/3F1/3

+ g
]
: (51)
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We now turn our attention to the actual calculation of g. To solve the
problem, we extend our domain so that it is semi-infinite in the ξ-direction.
We can do this because of the underlying convective nature of the problem,
which sweeps information out of the zone x < 1. As indicated in section 3.1,
any diffusion in the ξ-direction is negligible.

With the new semi-infinite domain in ξ, we may introduce the standard
notion of a Mellin transform in the ξ-direction:

M �a� = â�λ� =
∫ ∞

0
ξλ−1a�ξ�dξ; M −1�â� = a�ξ� = 1

2πi

∫
C
â�λ�ξ−λ dλ;

where C is the Bromwich contour. Taking the Mellin transform of (48)
and (49b), we have

d2Ĉ2

dy2
= −3FλyĈ2 − Fy2 dĈ2

dy
; (52)

Ĉ2�0� = ĝ; (53a)

Ĉ2�∞� = 0: (53b)

By introducing the following substitutions:

Ĉ2�y� = ye−ηh�η�; η = Fy
3

3
;

into (52), we obtain

η
d2h

dη2
+
(

4
3
− η

)
dh

dη
− �1− λ�h = 0: (54)

The solutions of (54) are given by the Kummer functions in [27], 13.1. We
rewrite the solutions in the Ĉ2 notation to yield

Ĉ2 = ye−η
[
a1M�1− λ; 4/3; η� + a2U�1− λ; 4/3; η�]; (55)

where a1 and a2 are arbitrary constants. Using the asymptotic expansions for
the Kummer functions of large argument given in [27], 13.1.4 and 13.1.8, we
obtain an expression for Ĉ2 for large η, which we use in (53b):

lim
η→∞

ye−η
[
a1

0�4/3�
0�1− λ�e

ηη−�1+λ�/3 + a2η
−�1−λ�

]
= 0:

Although technically both terms on the right-hand side tend to zero, the first
term does so algebraically; whereas, the second term decays exponentially. To
match to algebraic decay, the next order term in Cv must diverge algebraically
as yv → 0. However, from (12), we again note that there is no diffusion
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in the viscous layer. Thus, any singularity in the boundary condition must
be convected from upstream. Because there is no such singularity in the
problem, we must take a1 = 0.

To satisfy the boundary condition at y = 0, we use the asymptotic ex-
pansions for the Kummer functions of small argument given in [27], 13.1.3
and 13.1.2. Doing so and using our choice of a1, we obtain an expression for
Ĉ2 near zero. Then we use this expression in (53a) to obtain the following:

a2 =
ĝF1/30�1− λ�

31/30�1/3� : (56)

We proceed by substituting (56) and a1 = 0 into (55) to obtain an expression
for ∂Ĉ2/∂y�0�, which we can then relate to ĝ:

ĝ = −
[

0�1/3�
32/3F1/30�2/3�

]
0�2/3− λ�
0�1− λ�

∂Ĉ2

∂y
�0�; (57)

where we have used the Mellin transform of (50). Inverting (57) using the
formulas in [28], we obtain

g�ξ� = − 1
32/3F1/30�2/3�

∫ ξ

0

1
ξ′

(
ξ

ξ′
− 1

)−2/3 ∂C2

∂y
�ξ′; 0�dξ′ (58)

in the ξ-coordinates, which can be rewritten in the x-coordinates as

g�x� = − 31/3

2F1/30�2/3�
∫ x

0

1
�x3/2 − x′3/2�2/3

∂C2

∂y
�x′; 0�dx′; (59a)

= − 31/3α

2F1/30�2/3�
∫ x

0

Bi�x′�
�x3/2 − x′3/2�2/3 dx

′; (59b)

where in obtaining (59b) we have used (50).

5.2. Remarks on a uniform expansion

Although it seems as if we have found the first two terms in a uniform ex-
pansion for B, this is not the case. Expanding (51) for large t, we have the
following:

B1 ∼ −
e−αttK
α

[
0�1/3�
32/3F1/3

+ g
]
; t →∞; (60)

which is similar in form to a secular term in a two-timing problem. This is
because of the presence of a secular forcing of the operator in (41b). Of
course, because B0 approaches an O�1� steady state, DaB1 � B0 for all t,
and so technically, the expansion does not fail at this order. However, the
form of (60) should still give us pause, because if we were to subtract off Bs,
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then for t = O�Da−1�, the second term in our expansion would be the same
size as the displacement from the steady state.

The standard way to fix the secularity is to introduce a multiple-scale ex-
pansion. Because the secularity occurs at first order, the appropriate slow
time scale is τ = Dat. The solution procedure proceeds as above, except
that g no longer depends on Bi�x� as in (59b), but on an amplitude function
a�x; τ�, which equals Bi�x� when τ = 0:

g�x; τ� = − 31/3

2F1/30�2/3�
∫ x

0

αa�x′; τ�
�x3/2 − x′3/2�2/3 dx

′:

To suppress the secularity in (41b), one may use the Mellin transform to
obtain the following equation for â:

∂â

∂τ
+ K
α

{
−
[

0�1/3�
32/3F1/30�2/3�

]
0�2/3− λ�
0�1− λ� �αâ�

}
= 0:

However, we immediately note that the solution of this problem will be an
exponential of gamma functions in λ, which does not have an explicit inverse
Mellin transform.

Thus, we conclude that this technique, although perhaps theoretically more
pleasing, fails to yield a result that is usable in practice. For calculation pur-
poses, we must use the solutions in (43) and (51), but only for t = o�Da−1�.

5.3. Particular nonuniformities

Now we examine some special cases of the nonuniform formula. Suppose
that in addition to being even in x, Bi�x� is also analytic. Then it must have a
series in powers of x2n = ξ4n/3, where n is a non-negative integer. Substituting
this form into (50), we obtain

∂C2

∂y
�ξ; 0� = αξ4n/3H�1− ξ�: (61)

Substituting (61) into (58) and rewriting in terms of x, we have the following:

g�x� = − 0��4n+ 2�/3�0�1/3�
32/3F1/30�1+ 4n/3�0�2/3��αx

2n�; 0 ≤ x ≤ 1: (62)

Therefore, if forced at some even power of x through Bi�x�, the concen-
tration field responds at the same power of x with the new coefficient in (62).
Thus, at any time t, the analyte has the same general structure as it has ini-
tially. Hence, there is no transverse error associated with this model. In the
case n = 0, we obtain

g�x� = −α0�1/3�
32/3F1/3

;
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which exactly matches with (37) once one takes into account the difference
between (34b) and (61).

We conclude by illustrating the behavior for a special case; namely, when

Bi�x� = 1− x2: (63)

Substituting (63) into (43) and (45), we immediately obtain B0�x; t� and its
average:

B0�x; t� =
1+Ke−αt

α
− x2e−αt;

B̄0�t� =
1+Ke−αt

α
− 7

27
e−αt :

In this case, we may use (62) twice to calculate g�x�:

g�x� = − α

32/3F1/3

[
0�1/3� − 9x2

40�2/3�
]
: (64)

Substituting (63) and (64) into (51), we have the following:

B1�x; t� =
e−αt

32/3F1/3
�a1 + a2x

2��a3 + a4x
2�; (65)

a1 =
K

α
�t − a2�; a2 =

1− e−αt
α

; a3 = K0�1/3�; a4 = −
9α

40�2/3� :

The average of (65) is found to be

B̄1 =
e−αt

32/3F1/3

[
a1a3 +

7
27
�a2a3 + a1a4� +

61a2a4

405

]
: (66)

Figure 5 shows a graph of B̄1 versus t in order to indicate the behavior
of the correction to B̄0. What is not apparent from the graph (because both
decay) is that �DaB̄1� � �B̄0 − Bs� as t → ∞, a violation of the assump-
tion of our perturbation expansion. However, note from the graph that the
correction is small, even without the Da coefficient.

Because it adds on another layer of complexity, one may ask whether the
size of the effect of the spatial variability justifies its inclusion. In other words,
what is the error if we use (39) to estimate our solution, but replace Bi with
the average of the initial condition here, given by B̄i = 20/27?

To answer that question, in Figure 6 we plot the difference between the
uniform solution given in (39) with Bi = 20/27 and B̄0 + DaB̄1. From our
discussion in section 5.1 we expect the error to be O�Da�, because at leading
order the x- and t-dependences separate. Indeed, the linear dependence on
Da is easily seen by looking at the peak in the graph. However, we also note
that the error in not using the nonuniformity of the initial condition is small.
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Figure 5. B̄1 versus t for K = 1.

Figure 6. �B− �B̄0 +DaB̄1�� versus t for K = 1. In increasing order of thickness: Da = 0:005,
0.015, 0.045, and 0.135.

6. Remarks on moderate Da

As mentioned earlier, if the speed of the reaction is fast enough, there may
be no way to keep Da small. Therefore, we discuss briefly the case where
Da = O�1�, D� 1, and the initial state is nonuniform. The solution process
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for C1 proceeds as in section 5.1, with a few changes. First, solving (27) for
C1�x; 0; t�, we obtain

C1�x; 0; t� = 1
Da

[
1− 1

1− B
(
∂B

∂t
+KB

)]
≡ g�x; t�: (67)

Equation (67) simply provides a new definition for g. The solution process
for C1 proceeds as in section 5.1 up through (59a). Then substituting in (29),
we have

g = 31/3

2F1/30�2/3�
∫ x

0

1
�x3/2 − x′3/2�2/3

∂B

∂t
�x′; t�dx′: (68)

Equating (67) and (68), we obtain the following:

1− ∂B
∂t
− αB = 31/3Da�1− B�

2F1/30�2/3�
∫ x

0

1
�x3/2 − x′3/2�2/3

∂B

∂t
�x′; t�dx′: (69)

In the limit that Da → 0, (69) reduces to the evolution equation (41a) for
B0, as expected.

In contrast to its counterpart in section 5.1, equation (69) is nonlinear
and, hence, difficult to solve. However, one may solve it numerically using
techniques similar to those in [23].

7. Conclusions and further research

Scientists must obtain accurate estimates of rate constants for reactions in
order to understand the underlying biology and chemistry. The advent of
resonant mirror technology and its application in the IAsysTM device allows
experimentalists to measure the concentration of bound ligands accurately in
real time. However, the correct analysis of the data necessitates the formu-
lation of mathematical models that incorporate the important effects in the
system.

In this work, we presented a model for the IAsysTM device. By far the most
complicated aspect of the system is the flow field, and we expect that a correct
solution of the entire field would necessitate a numerical solution. Although
we simplified the intricate flow dynamics down to simple 2-D stagnation flow,
we expect our results to be qualitatively correct, because much of the sensor
surface is in the neighborhood of the stagnation point.

The full transport model includes convection, diffusion, and reaction at
the sensor surface. Using the special case of stagnation flow, we found that
if B is initially uniform in x, it will remain so for all time. This is because
the concentration C of the analyte also remains independent of x. However,
because this uniformity is a direct result of the choice of stagnation flow, we
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analyzed cases where Bi was not uniform in x in order to gain insight into
the evolution with more realistic flow fields.

The key dimensionless group in the problem is the Damköhler number Da.
The limiting case Da→ 0 corresponds to the total separation of the transport
and reaction processes. If Da is small but nonzero, transport effects play a
role. We derived the first-order correction to the bound-state concentration
in the case where Bi depends on x. The correction can be used only for
times t = o�Da−1�, after which the solution exhibits a secularity. Although
we derived the first term in a multiple-scale expansion and identified the
relevant second time scale (Dat), the equation has no explicit solution.

In the case of larger Da, the solution can be expressed in terms of a
nonlinear integral equation that must be solved numerically. One area of
further research is to use the techniques outlined in [23] to solve the resulting
integral equation. As in section 5.3, a key avenue to pursue is the error
induced by using the uniform solution (39) instead of the solution to the full
problem.

In addition to providing improved estimates to the rate constants in se-
lected situations, the careful modeling and scaling in sections 2 and 3 provide
a sturdy mathematical framework for further studies. There are several in-
teresting areas for such studies. Clearly, one area of interest must be the
consideration of more realistic flows in the IAsysTM.

Also, in contrast to the BIAcoreTM, which consists of a recirculating chan-
nel of analyte, in the IAsysTM, a fixed amount of analyte is placed in the well
at the start of the experiment. If this amount is not much greater than the
amount of analyte used up when the reaction is complete, then depletion
effects arise [13, 29]. These effects will change the matching condition (24)
and hence the solution. In particular, we expect the reaction to slow as the
analyte is depleted.

Last, in many applications, the receptors are embedded in a thin (200–
500 nm) dextran layer on the sensor surface, rather than attached to the
sensor surface itself [12]. Thus, the true system in this case is a set of coupled
diffusion equations, one for the bulk flow and one for the dextran layer.
If the thickness of the layer is negligible, our approximation of a surface
boundary condition is appropriate. However, we note in the Appendix that
the thickness of the dextran layer is only an order of magnitude smaller than
a typical value of HD. Clearly, a perturbation approach would yield important
information about the effects of such a layer.

8. Nomenclature

8.1. Variables and parameters
Units are listed in terms of length (L), mass (M), moles (N), or time (T ). If
the same letter appears both with and without tildes, the letter with a tilde has
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dimensions; whereas, the letter without a tilde is dimensionless. The equation
where a quantity first appears is listed, if appropriate.

a: arbitrary constant or function, variously defined
B̃�x̃; t̃�: bound ligand concentration on surface ỹ = 0 at position x̃

and time t̃, units N/L2

C: Bromwich contour
C̃�x̃; ỹ; t̃�: unbound ligand concentration at position �x̃; ỹ� and time t̃,

units N/L3

D̃: molecular diffusion coefficient, units L2/T (9)
Da: the Damköhler number, which measures the ratio of reaction

and diffusion effects
F : constant of proportionality in Falkner–Skan solution, defined

as f ′′�0�/2 (8)
f �yv�: Falkner–Skan solution for boundary-layer velocity (7a)
g�·�: Dirichlet condition on C2 at y = 0 (49b)
H: typical height scale, units L

h�η�: function used in nonuniform solution
K̃: affinity (or dissociation equilibrium) constant for system, de-

fined as k̃off/k̃on, units N/L3 (10b)
k̃off : dissociation rate constant, units T−1 (10b)
k̃on: binding rate constant, units L3/�NT � (10b)
L: distance of stirrer from external wall, units L

M : Mellin transform
n: integer exponent (61)
RT: receptor site density on surface, units N/L2 (15)
r: aspect ratio, defined as L/H (6a)

Re: Reynolds number for the system, defined as VH/ν
S: slope of a line (42)

Sc: Schmidt number for the system, defined as ν/D̃ (12)
t̃: dimensional time, units T (9)

ũ�x̃; ỹ�: fluid velocity at position �x̃; ỹ�, units L/T
V : velocity of stirrer, units L/T

v�x; yv�: dimensionless velocity at position �x; yv� in the viscous
boundary layer (3a)

x̃: measurement in direction parallel to reacting surface, units
L

ỹ: measurement in direction perpendicular to reacting surface,
units L

Z: integers
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8.2. Greek
α: dimensionless parameter, defined in (32) as 1+K
γ: dimensionless parameter, defined in (38) as

Da0�1/3�/32/3F1/3

ξ: scaled variable, defined as x3/2 (47)
η: distorted y variable, value Fη3/3
λ: variable in Mellin transform space
ν: kinematic viscosity of fluid (3b)
τ: long-time scale in multiple-scale expansion

8.3. Other notation
D: as a subscript, used to indicate the diffusive time scale (13a)

i: as a subscript on B, used to indicate the initial state
n ∈ Z: as a subscript on a or C, merely an index (33); as a subscript

on B, indicates a series in Da (40)
p: as a subscript, used to indicate potential flow scalings (1)
s: as a subscript, used to indicate a steady state (32)

T: as a subscript, used to indicate the total value of a quan-
tity (11)

v: as a subscript, used to indicate the viscous boundary
layer (3a)

x̃: as a subscript, used to indicate velocity in the x̃-direction
ỹ: as a subscript, used to indicate velocity in the ỹ-direction
1: as a subscript on C, used to indicate a displacement from a

constant state (26)
¯ : used to denote the mean of the bound concentration over

the reacting strip, defined in (44a) as

B̄�t� = 3
4

∫ 1

−1/3
B�x; t�dx:

ˆ : used to indicate the Mellin transform
′: on a dependent variable, used to indicate differentiation (7a);

on an independent variable, used to indicate a dummy vari-
able of integration (58)

Appendix

We begin by considering the properties of the IAsysTM itself. (These num-
bers were provided by Jim Ladine of Affinity Sensors [14].) The vibrostirrer
oscillates at 140 Hz with a maximum amplitude of 0.5 mm. It is usually run
at 85% of that, so we have a typical value for V of 37.4 cm/s.

We assume that the rest position of the vibrostirrer is 0.75 mm above
the surface, although this may actually be somewhat too large. We impose
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Table 1
Parameter Values from the Literature

Material Parameters

Lower Value Upper
Parameter Bound Used Bound

CT �10−11 mol/cm3� 0.25 [30] 5 [14] 40 [30]
D̃ �10−7 cm2/s� 2.8 [31] 2.8 10 [30]
k̃on �108 cm3/�mol · s�� 6:5× 10−3 [32] 2.1 [33] 100 [21]
RT �10−12 mol/cm2� 0.25 [30] 3 [14] 4 [30]

Calculated Quantities
Lower Value Upper

Parameter Bound Used Bound

D 2:27× 10−3 14.2
Da 4:62 × 10−7 3:06× 10−1 4:48× 104

HD �10−4 cm� 1.36 3.56
Sc 2 × 103 3:57× 104

symmetry upon the flow in the device. This implies that the vibrostirrer, which
we model as a jet, is 0.75 mm from the side of the device. Therefore, we have
L = H = 7:5× 10−2 cm, which implies that r = 1.

We consider the solution containing the analyte to be water, so we have
from [1] that ν = 10−2 cm2/s, which implies that the Reynolds number is 280.
Thus, we may take Re � 1 and use laminar inviscid flow theory, because
turbulence does not ensue until Re is around 2100 [1].

Ranges for the other material parameters are listed in Table 1, along with
the appropriate references. The value used for D̃ is for fibrinogen. The vari-
ation in CT reflects the fact that one can run experiments using different
values to create more data sets to increase accuracy. It should be noted that
the values in [30] are those for the BIAcoreTM device, but they still provide
good upper and lower bounds for the IAsysTM device. We note from the table
that D = O�1� only in extreme cases and is usually much smaller. Therefore,
our use of the t variable as a slow variable in (19) is justified.
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