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An Alternative Example of the
Method of Multiple Scales®
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Abstract. An alternative example of the method of multiple scales is presented. This example arises
in the study of the classical heat equation with a slowly varying flux imposed at one end.
The module presents introductory ideas about dimensionless variables, multiple-scale ex-
pansions, and scaling of the dependent variable. The necessarily obfuscating algebraic
computation is less than that for more familiar multiple-scale examples, such as the per-
turbed oscillator. The results are analyzed for both their physical and mathematical
importance.
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I. Introductions.

I.1. To the Instructor. In the context of a course in singular perturbation theory,
the method of multiple scales is often presented. For historical reasons, the classical
example of the method of multiple scales has been that of a perturbed harmonic os-
cillator [1], [2], [3], [4]. Though illustrative, this example (especially in the case of
nonlinear problems) suffers from the complicated nature of the algebraic manipula-
tions required for its solution. Rooting through all this algebra detracts from the new
idea—the multiple-scale expansion—being presented.

In the context of studying a more complicated problem involving reactions on
the surface of a DNA strip [5], the example presented herein was encountered. The
algebra required is much reduced, and hence does not obfuscate the key ideas. In
addition, the example introduces simply the concept of multiple-scale expansions for
partial differential equations (PDEs). Other examples resort to traveling waves to
reduce the problem to an ordinary differential equation (ODE) [2], [3]. We reduce the
problem to an ODE using separation-of-variables techniques, which are applicable to
a wider class of problems.

The module is designed to be used optimally by students who have had some
exposure to both PDEs and perturbation methods. However, the initial separation-
of-variables solution is derived in section 3 from first principles, so students without a
background in PDEs can follow the analysis. In addition, the key ideas of perturbation
methods are explicated herein, and thus it may be used by students with little or no
background in that subject.
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318 D. A. EDWARDS

1.2. To the Student. Many physical problems involve a balance of dynamical
mechanisms. Sometimes all the mechanisms are important at all times and places,
but often they are not. To see the balances mathematically, we often introduce
dimensionless variables by dividing the variables by constant characteristic values.

For instance, when studying wave motion on the ocean, a “natural” length scale is
the length of the boat. In a bacteria growth problem, a natural time scale is the time
needed for the population to double [6]. In an artillery problem, a possible length
scale (though not a very useful one) is the radius of the earth [7]. Since only one scale
may be chosen for each variable, the balances between mechanisms appear as ratios
between parameters.

Perhaps in one region or on one time scale two physical effects are most important.
Then in that region, as a good first approximation we may assume that these are the
only effects in the problem. Mathematically, the coefficients of terms in an equation
corresponding to other physical processes may be quite small, and hence we hope that
those terms can be neglected. The technique just described falls under the category of
perturbation methods. In this paper we concentrate on the method of multiple scales,
where the nature of the problem forces us to examine the solution on two or more
scales at the same time.

In this module we demonstrate the method of multiple scales by examining the
case of heat conduction (diffusion of heat) in a rod where a slowly varying heat flux is
imposed at one end. We begin by writing down the dimensional governing equations
for the system. By choosing appropriate scales associated with heat conduction, we
derive a far simpler system containing a small parameter €. As a first approximation,
we ignore the variance of the heat flux. Unfortunately, this yields a divergent solution.
Next we ignore the “fast” heat conduction. This yields an inconsistent system. The
only way out is to consider both time scales simultaneously; hence the name “method
of multiple scales.”

2. Governing Equations. We wish to examine the problem of heat flow in a
thin cylindrical rod of length L. (A table of all the variables used in this module,
along with units and equation of first introduction, is given in section 6.) As a first
approximation, we take the rod to be one-dimensional. (The enterprising reader may
wish to show that this is a good approximation; see Exercise 3.1.) The governing
equation for the heat flow is derived elsewhere [7], [8], [9], [10]; here we simply quote
the result:
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0<z<IL,

where p is the density of the rod, C’p is the heat capacity at constant pressure of the

rod, J is the heat flux, € is the temperature, and £ measures distance along the rod.
Equation (2.1a) states that if the heat flux flowing into a segment dz of the rod

from the left is more than that flowing out to the right, then the temperature at &

will increase. The temperature will decrease if the converse is true. The heat flux J
is given by

. 90

2.1b J=—-k—,
(2.1b) oF

where k is the thermal conductivity of the rod. Equation (2.1b) states that heat
will flow from areas of high temperature to areas of low temperature, and that the
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relationship is linear. Equation (2.1b) is called Fourier’s law of heat conduction [9].
Combining equations (2.1) yields the standard heat equation

., 00 0%

Initially there is a uniform temperature of zero in the rod:

0<z<L.

(2.3) 0(i,0) = 0.

At the two ends of the rod, we specify the heat flux J. At the end Z = L, we require
that the rod be insulated; that is, there is no heat flux through this end:

(2.4a) J(L,t) = kgi(L,f) = 0.

At the end Z = 0, we specify the heat flux to be some known function. We wish to
vary the heat flux slowly, so we associate a small frequency w with the time in the
function:

= 0, - 8
(2.4b) J(0,1) = —ho=(0,1) = —Jef(wt),
where J, is a characteristic size of the heat flux and f is a dimensionless function. By
“characteristic size” we simply mean a value that the flux neither exceeds by a large
quantity nor is much smaller than. Candidates include the amplitude of an oscillatory
function, the mean, or the root mean square.

Equations (2.1)—(2.4) have been written in dimensional form; that is, all the
variables should be considered to have units associated with them. (The particular
units may be found by consulting section 6.) However, often it is relative differences
that are important. For instance, if during the experiment the bar is 25°C, is that
“cold” or “hot”? The answer would most assuredly depend on whether the bar started
the experiment at —25°C or 125°C. What do we mean by “varying the heat flux
slowly”? More precisely, the variation should be slow compared with the characteristic
time needed for a “heat signal” to diffuse across the bar. This way, any change in the
heat flux can be accommodated by conduction in the bar.

In describing this characteristic time in terms of the physical problem, students
of the heat equation may object that the diffusion operator allows an infinite signal
speed, and thus some heat signal is transferred throughout the bar instantaneously
[10]. However, this signal is infinitesimal, and hence we could choose a time at which
a signal of half the original intensity passes to the end of the bar. Fortunately, we
need not choose such an artificial time; the natural conduction time will be revealed
to us shortly as a consequence of our scaling. Another insightful question to ask is,
What is the size of this characteristic time? Clearly if the bar is very short or the
thermal conductivity k is very large, it will be short, and it will be long if the opposite
is true.

To resolve these issues, we wish to scale all variables in the problem to make
them dimensionless. (Once we have an answer, it is a simple matter to reverse the
process to express all quantities in dimensional form.) To do this, we must divide each
variable by a characteristic value. The goal is to reduce the number of parameters if
at all possible and to simplify any algebra we can. If we let
(2.5a) x =

i

1 &
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where x is now dimensionless, we reduce the domain to x € [0, 1], the simplest pos-

sible domain. However, it is not immediately obvious how we should scale time and
temperature, so we let

(2.5b) t=wct,  O(zt)=

where w. and 6. are constants to be determined. Making the substitutions listed in
(2.5) into (2.2), we obtain

A 00 kb, 0%0
PCbewey = Ta g 0SosL,
9 k9%

2' N, — A~ 7 a-
(2.6) ot L2pCu, 072

We are interested in the heat conduction in the rod, and thus wish to keep the
coefficient on the right-hand side of a moderate size. That is, we do not wish the
coeflicient to be so large that the left-hand side may be ignored, nor so small that the
right-hand side may be ignored. We strive for a balance between the two terms.
Clearly the easiest way to create such a balance (from both a physical and an
algebraic standpoint) is to set the coefficient equal to 1. Therefore, we choose

(2.7) o= —
pCpL?
which makes (2.6)
20 020
(2.8) a -_— @.

The inverse of w. is exactly the natural conduction time discussed above. We note
that if k is large or L is small, the frequency w. is very high, which corresponds to a
short characteristic diffusion time, as suspected.

Substituting (2.5) and (2.7) into (2.4b), we obtain

o0 =af (£).
We

L Ox
00 JoL w

Note that e is a dimensionless ratio of the frequency of the flux oscillations and the
frequency associated with conduction. The form of € allows us to quantify what we
mean by “slow variance.” We want the frequency of the imposed heat flux oscillation
to be much less than the frequency due to diffusion, so we require that 0 < ¢ < 1.
We want to be sure to include the effects of the flux forcing, and thus wish to keep
the coefficient on the right-hand side of a moderate size. As above, we would ideally
like the coefficient to be 1, so we choose

(2.10) b =
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This makes (2.3), (2.4a), and (2.9)

(2.11) 0(z,0) =0,

0
(2.12a) 5, (LD =0,
(2.12b) %(O,t) = f(et).

Note the vast simplification accomplished by introducing dimensionless variables.
We have reduced the size of our parameter set from six (L, k, p, C'p, Je, and w) down
to just one: e. Introducing dimensionless variables will always reduce the number of
parameters, a result called the Buckingham Pi theorem [6]. In addition, it reinforces
the relativity of actual physical measurements. No matter how small w, is, we simply
require that w be smaller to enforce that e < 1.

By reducing the number of parameters, we note that we can now solve a wide
range of physical problems by constructing the solution to the system above, then
substituting in the parameter values to determine € and the dimensional quantities.

EXERCISE 2.1. Clearly equations in dimensional quantities make sense only if the
terms on each side of the equation have the same dimensions. That is,

3 clearly does not equal 3 %
sec cm

Using the dimensions listed in section 6 for each of the dimensional quantities, verify
that the terms in each of equations (2.1) and (2.4b) have the same dimensions.
EXERCISE 2.2. Verify that w. has units of inverse time and 6. has units of tem-
perature.
EXERCISE 2.3. shape Using appropriate resources (for instance, [11], [12], [13],
[14] ), estimate w. for rods of various materials. How slow should the flux oscillations
be in these cases?

3. Perturbation Methods. Since the system (2.8), (2.11), and (2.12) is linear,
its solution may be written down via the technique of separation of variables [8], [10].
We define

(3.1)  0,(t) = 2/0 0(z,t) cos(nmz) dz, O(z,t) = 902(15) + Z 0, (t) cos(nmz).

Here 6,, is sometimes called the finite Fourier cosine transform of 6 [15]. If we can
obtain an equation for 6,, alone, it will be an ordinary differential equation (ODE),
rather than a partial differential equation (PDE). Then upon solving for 6,, for each
n, we may substitute our result into the sum in (3.1) to obtain the solution 6(x,t).

To obtain an ODE for 6,,, we multiply (2.8) by 2cos(nmx) and integrate from
x =0 to x = 1. Integrating by parts twice, we obtain

(3.2a)
oo 0%
A?acos(mm)dx—/o 2@cos(n7rx)dx,

o [ 09 ! Lo
2%/0 0 cos(nmz)dr = 2 {8 cos(mrx)] + 2n7r/0 p sin(nmz) dz

€z 0
o0

1
= —28—(0) + 207 [fsin(nrz)] — nr? [2/ 6 cos(nmzx) d:c] ,
x 0
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(3.2b) B _ —2f(et) — n*720,,
dt
where we have used (2.12).

The choice of the cosine series in (3.1) was not arbitrary; it was chosen so that
we could use the boundary data given in (2.12) to reduce (3.2b) to an ODE where all
quantities except 0, are known. It is the only series for which the problem simplifies
so completely. For instance, a sine series will not work; see Exercise 3.2.

The initial condition for (3.2b) is given by the finite Fourier cosine transform of
(2.11):

(3.3) 0,(0) = 0.
Solving (3.2b) subject to (3.3), we have the following:

% (en2w2t9n) = 2f(et)e™ ™4,

(3.4) 0,(t) = —2 / L) f(ez) dz.
0

This expression, though accurate, may not be very useful in computing and interpret-
ing our solutions, especially if f is a complicated function. In particular, we may not
be able to evaluate the integral in closed form.

Substituting (3.4) into (3.1), we note that the resulting series is useful for large
time, since the terms et decay exponentially fast with increasing n. Thus sum-
ming only a few terms can lead to an excellent approximation. Unfortunately, for
small times the terms decay very slowly, and hence the series solution is not very
useful.

What we desire to do is exploit the assumed smallness of € to see if we can simplify
our work while obtaining a more convenient expression. Physically, we expect that
the oscillation in the heat flux will be so slow that the rod can conduct any resulting
changes in the temperature away, thus equilibrating the temperature. Therefore, we
expect the rod to be near the equilibrium state for all time. Mathematically, we wish
to use a perturbation method [1], [2], [3], [4], [16] to obtain an approximate solution
for 6,,. Since € is so small, we expand all of our relevant functions in Taylor series in
€:

(3.5) O, (t;€) = 6°(t) + €bL (t) + - - -, flet) = f(0) +etf (0) +---.

In order for the series to remain valid, we require that each term in the expansion
be smaller than the one before. (Otherwise, we would have no assurance that this
approximation accurately represents the true solution.) We substitute (3.5) into (3.2b)
and (3.3) and equate like powers of e:

d(0) +€0;)

—End — 2[(0) + et f'(0)) - nPm (63, + 0},

de'(r)L 2290
d971L 2 _2p1 /
(67 + €6,,)(0) = 0,

(3.7b) 6} (0) =

n
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The solution of (3.6) and (3.7) proceeds just as in the solution of (3.2b) and
(3.3), but the forcing functions are now so simple that we may obtain closed-form
expressions. At this stage we focus only on the mode n = 0, which represents twice
the average temperature @ in the bar, since

1
0

For n = 0, the equation analogous to (3.4) is

(3.82) 0t = -2 /0 F(0)dz = —2£(0)t.

Solving for 6} in the same way, we obtain the following:

(3.8b) 05(t) = — /O zf'(0)dz = —f'(0)t>.

If we use the series form for 6y given in (3.5) and our expressions (3.8), we see
that to leading two orders we have

(3.9) Oo(t) ~ —2f(0)t — ef’(0)t>.

We note that the expression (3.9) is exactly what we would have obtained had we
substituted our series form for f(t) given in (3.5) into (3.4) with n = 0:

0o (t) ~ _2/0’ FO0) + exf(0) dz = —2f(0)t — ef'(0)¢2.

The expression (3.9) is a good approximation for t < ¢~!, which (depending on the
size of €) may be good enough for the experiment at hand. In addition, (3.9) yields a
closed-form expression that may be easily calculated for any f, as opposed to (3.4),
which does not.

However, we note that as ¢ grows large (in particular, for ¢t > e¢~1), the second
term is larger than the first, which violates the assumption of the perturbation expan-
sion given after (3.5). (A similar phenomenon happens for n # 0; see Exercise 3.3.)
This latter term that grows too large is called a secular term [2], [3]. We also note
that the first term diverges as t — oco. This may or may not be a problem, depending
on the form of f.

This paradox illustrates the contradictory nature of the asymptotic expansion.
Note that as € — 0 for any finite ¢, the series in (3.9) converges. However, for any
finite €, the series diverges as t — co. We say that the series loses validity whenever
t > e~1. Why this series failed can be seen by letting f(et) = cos(et) — sin(et). Then
the small-e¢ expansion

cos(et) —sin(et) =1 —et + - -

clearly does not hold for ¢ large. In particular, for ¢t > ¢!, the series above diverges,
while cos(et) —sin(et) is always bounded. This phenomenon is illustrated in Figure 3.1.

Therefore, we see that we must treat variations in the heat flux more carefully
than just expanding them in a Taylor series. As a first attempt at resolving the
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Fig. 3.1 1 — et (thin line) and cos(et) — sin(et) (thick line) vs. t for e = 0.01.
problem, we rescale time so that the oscillations in the heat flux occur on the time
scale of interest. These oscillations occur on the time scale et, so we let
(3.10) T = et, o(x,7) = 0(x,t).
(In contrast to rescaling ¢, one can find the scale T directly from the dimensional

equations by choosing w,. differently; see Exercise 3.4.)
Substituting (3.10) into (2.8), (2.11), and (2.12), we obtain

op  9%*¢
(3.11) o = o,
(3.12) (z,0) = 0,
(3.13a) %(1,7) —0,
0¢ B
(3.13b) %(0,7’) = f(7).

Again we assume a perturbation series in € for our dependent variable (in this case,

):
(3.14) oz, 7€) = ¢°(x, 7) + e (x,t) 4+ - - -.

Substituting (3.14) into (3.11) and (3.13), we have, to leading order,

(92(,250 B
(3.15) PRl
0
(3.16a) %(1, 7) =0,
O¢°

(3.16D) 5 (0> 7) = f(7)-
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Note that the leading-order operator (3.15) does not allow an initial condition to be
imposed upon it, and thus we didn’t bother substituting (3.14) into (3.12). This type
of behavior often leads to a singular perturbation problem; more details about the
elimination of boundary conditions may be found in [2], [3].

Solving (3.15), we obtain

o(z,7) = A(T)x + B(T)
(3.17) = B(7),

where we have used (3.16a). But we note that (3.17) does not solve (3.16b), and
hence there is no solution to the system (3.15) and (3.16). This is due to the fact
that the leading-order operator, the one-dimensional Laplace’s equation, is a steady-
state operator; i.e., it does not have any explicit time dependence. But we are trying
to impose a time-dependent flux at one end. Physically, the conduction mechanism
must equilibrate any changes in the flux that occur. However, (3.15) models only
steady-state phenomena, and hence the equilibration process cannot be described by
this equation.

This contradiction may also be seen by looking at the finite Fourier cosine trans-
form of ¢. After using (3.10), (3.2b) becomes

don

1
(3.18) e

= —f(1) = n?*n’p,.
Expanding ¢,, in a perturbation series in € a la (3.5) and substituting the results into
(3.18), the equation corresponding to the leading order in € is

f = —n*r?g).

But this implies that f(7) = 0 from the zeroth-mode (n = 0) equation, which doesn’t
make sense. When faced with such a contradiction, we must conclude that the form
for our perturbation expansion is incorrect. (Note this is the only assumption we
made; everything else followed directly from it.) Therefore, we were wrong to solve
the problem on the diffusion time scale and expand our function f(et) as a series in e,
and we were wrong to solve the problem on the 7 time scale and neglect conduction
altogether. We must consider both time scales simultaneously.

EXERCISE 3.1. Suppose that the cylindrical rod has some finite radius R. Write
the two-dimensional equations that result. Using the perturbation methods outlined
in this section, derive a relationship between R and L such that the leading-order
equation is still the one-dimensional equation (2.8).

EXERCISE 3.2. Suppose that we replace the cosine by a sine everywhere in (3.1)
and (3.2a). Show that upon integration by parts, the equation analogous to (3.2b)
includes unknown boundary data and hence cannot be solved explicitly.

EXERCISE 3.3. Solve (3.6) and (3.7) for n # 0. Show that 0} > 6° fort > e !.

EXERCISE 3.4. Verify directly that by letting w. = w in the dimensional equations
(2.2)—(2.4), we obtain (3.11)—(3.13).

4. Multiple-Scale Expansion. Since the two time variables ¢ and 7 represent the
time scales for two different but interdependent physical processes, it seems reasonable
that trying to solve the system using one time scale alone would fail. Therefore, we
include both time scales in our expansion by letting

(4.1) O(z,t) =O(x, T, 1), T=t,
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where we use the letter T for the fast time scale (corresponding to the diffusion pro-
cess) to ease somewhat the confusion when we introduce the following transformation
from the chain rule:

d 0 0
4.2 o e
(4.2) @~ oT " or
Essentially we are assuming that 7" and 7 are independent variables and we are ig-
noring their relationship to the original variable ¢. Substituting (4.1) and (4.2) into

(2.8), (2.11), and (2.12), we obtain
00 00 9’0

(43) 87 + EE = w,

(4.4) O(z,0,0) =0,

(4.5a) %(1,T,7) =0,
90

(4.5b) %(O,T, T) = f(7).

Therefore, we see that we have resolved several problematic issues from the pre-
vious section:

(1) We have explicitly retained the oscillation time 7 in (4.5b), so we avoid ex-
panding f in a series in et as in (3.5). (Here we assume that f itself has no expansion
in €. This assumption can be relaxed; see Exercise 4.1.)

(2) We have explicitly retained the conduction time T in (4.3), so we will not
have an inconsistent system as in (3.15).

(3) In (3.4), we note that the variable ¢ (through the variable z) appears in two
ways. It appears with € in the argument of f, and alone in the exponential. By using
T and 7, we are no longer approximating either of these forms; we are using both of
them explicitly.

We again use a cosine series expansion as in section 3. Thus the analogous equa-
tions to (3.2b) and (3.3) are

90, 00, 5 .
(463) T +e€ oT +n°T @n = 2f(T)7
(4.6b) 0,,(0,0) = 0.

We assume a Taylor series for ©,, in e:
(4.7) O, (T, 15€) = T, 7) 4+ €OL (T, 7) + - - -.
Substituting (4.7) into (4.6), we obtain, to leading two orders,
(0% + €01) . (0% +€0})
aT T
00?

4. n 27200 — 9
(4.8a) T +n 4O, f(r),
009 n CH
or oT
(09 +€0")(0,0) =0,
(4.92) 0%(0,0) =0,
(4.9b) 0L1(0,0) = 0.

+ n2772(@% + e@,ll) = =2f(7),

+n?7?0,, =0,




ALTERNATIVE EXAMPLE OF MULTIPLE-SCALE METHOD 327

Solving (4.8a), we have, for n # 0,

(4.10a) 0%(T, ) = 711; 5:2) (P,
where

2f(0
(4.10b) gn(0) = nj;gﬂ)

from (4.9a). Note that at this stage the g,, are arbitrary. We must continue on to the
next order to solve for them. This is due to the fact that in the expansion of 6,, for
arbitrary n, the term that violates the expansion does not appear until one solves for
6! (see Exercise 3.3).

Substituting (4.10a) into (4.8b), we obtain the following:

00L | 5 ooy 2f(1) |, g
aiT Tt @" o n2m2 +gn(7_)e =0,
a(en%ﬂT@}l) 9 o 2f’(7—)€n2ﬂ'2T
—ar - Tt T e
2 !
(@11 eMTir) = g (r)Te T+ L) Ly (e,

ntmt
Therefore, we see that if g/,(7) # 0, then we have an undesirably large secular term
as in (3.9). We suppress the secularity by setting

_ 2£(0)

gn(t) =0 aad gn(T) = 22

2

s o T )],

(4.12) e%T, ) =

where we have used (4.10b).
Now we turn our attention to the case where n = 0. Then solving (4.8a) subject
to (4.9a), we obtain

(4.13) OY(T, ) = =2Tf(7) + go(7), 90(0) =0,

where the initial condition arises from satisfying (4.9a). Substituting (4.13) into (4.8b)
yields the following:

00}

~2Tf'(7) + gb(r) + o =0,
00}
TTO =2Tf'(1) — go(7),
(4.14) Op(T,7) =T*f'(r) = go(r)T + ho(7),

and we again have the same problem as in (3.9). From the form of (4.13) and (4.14), it
looks as if we are again trying to expand ©} in a Taylor series which is not uniformly
valid.

To ascertain what is going on, we examine the special case of f(et) = sinet. Then
calculating (3.4) for n = 0, we have

Oo(t) = —2/0 sin(ez) dz = M.

€
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1e3 5

.182'E

Fig. 4.1 A lin-log plot of f(t) (thin line) and |0o(¢t)| (thick line) vs. t for e = 0.01.

Therefore, we see that 6 is really proportional to €', as can be seen in Figure 4.1,
which shows f(¢) and |0y(t)| on the same axis. We note that since f(t) varies so slowly,
the contributions add up greatly, causing 6y(t) to be quite large for even moderate ¢.

Thus our series assumptions in (3.5), (3.14), and (4.7) were incorrect, because
they assumed that the first term in the expansion was proportional to €’. To remedy
this, we modify (4.7) to be of the following form:

(4.15) On(T,75€) = 10, YT, 7) + O%UT, 7) + eOL(T,T) +
Substituting (4.15) into (4.6), we obtain, to leading three orders in ¢,
00,1
4.1 20, =
(4.16a) T +n*n?0,
00t 00°
4.1 - ’0) = -2
(116b) o 8 el = <2 (r),
00°% 90}
4.1 n n 2201 _
(4.16¢) 5, —aT +n 7m0, =0,
(4.17a) (x,0,0) =0,
(4.17b) @0 o (2,0,0) =0,
(4.17c) 0L (x,0,0) =

The solution to (4.16a) and (4.17a) is
(4.18) O T, 7)=®p(r)e ™™ T,  @,(0)=0,

where ®,, is arbitrary at this stage for the same reasons that g,, was arbitrary before.
Substituting (4.18) into (4.16b), we obtain

900

aT
900
T

o, (r)e ™™ T 4 T2 4 n2n200 = ~2f(r),

(4.19) + 0?7200 = —2f(r) — @), (r)e " L.
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We note that the second term on the right-hand side of (4.19) is proportional to the so-

lution of the homogeneous operator on the left-hand side of (4.19). This phenomenon,

called forcing at resonance, is related to the Fredholm alternative theorem [1], [17].
Solving (4.19) subject to (4.17b) for n # 0 yields the following;:

a(en2ﬂ'2T@%) _ / n?n?T
—r =~ %(r) —2f(r)e" T,
—’VL27T2 Qf(T) —7L27\'2
(4.20a) On(T7) =~ (NTe™" " = 5 3 Fgn(n)e " T,
2/(0)
(4.20b) 92(0) = Z5

where the last equality comes from (4.17b). Note that if ®/,(7) # 0, then we have the
undesirable secularity as in (3.8b), because for T very large, ©%(T, 1) > 0, 1(T, 7).
Therefore, we suppress the secularity by setting

o (r)=0 = Pu(r)=0,
(4.21) e, 1(T,1)=0.

This corresponds to the fact that if we calculate 6,, for n # 0, we do not get a quantity
that is proportional to e~! (see Exercise 4.3); only 6 is that large. We also note that
upon substitution of (4.21) into (4.20a), we obtain our previous result (4.10a), and
thus our previous result (4.12) holds as well.

For the case n = 0, (4.19) becomes

969 )
T8 = —2f(r) - Bi(r),
(4.22) 0§ = ~[2f(r) + B(TIT + ho(7),

and hence to suppress secularity we must let

(4.23) Dy(7) = —2F(71), F'(t) = f(r), F(0)=0.
Making these substitutions into (4.18) with n = 0, we obtain

(4.24) 0y (T, 7) = —2F (7).

Note that if we substitute 7 = €T into (4.24) and expand for small ¢, we obtain the
secular parts of (4.13) and (4.14). This is the only nonzero term in the expansion for
Oy (see Exercise 4.2).

EXERCISE 4.1. Suppose that f(7) has the following expansion:

F@) =) +efH )+

Write the equations for ©F in this case for k = —1, 0, and 1. Ezplain how your
solution will change. (You need not work through all the details.)

EXERCISE 4.2. Show that ©F =0 for any integer k > 0.

EXERCISE 4.3. Calculate 8,, from (3.4) for the case f(et) = sinet, n # 0. Verify
that this quantity is proportional to € for small e.
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5. Conclusions.

5.1. Physical Interpretations. At this point we review the physical implications
of our solution. By assumption, the oscillations in the heat flux occurred on a much
slower time scale than that associated with heat conduction. Therefore, the bar
equilibrated any change in the heat flux very quickly.

We began by focusing on the conduction time scale. On this time scale, the oscil-
lations of the heat flux were so slow that the flux seemed to be nearly constant. This
observation led us to expand f(et) in a series in €, which turned out to be equivalent
to expanding in a series in et (see (3.5)). The nearly constant flux, integrated over a
long time frame, produces a very large change in temperature, as shown in Figure 4.1.
Unfortunately, our series solution was valid only for et < 1.

Then we rescaled to focus on the oscillation time scale. On this time scale, the
conduction is so fast that the bar immmediately reaches the steady state. But the
steady-state equation cannot allow variation of the flux on any time scale (as shown
in (3.15)), and hence we obtained an inconsistent system.

The solution to the problem involved incorporating both the oscillation and con-
duction time scales. Doing so, we obtained a solution that was uniformly valid for
all time. As shown in (4.12), after a decay of the initial forcing on the conduction
time scale, the solution behaves as if f(7) were a constant. This is exactly what we
would expect, since the oscillations are so slow that the forcing seems to be constant
on the fast conduction time scale. However, this quasi-stationary forcing, integrated
over the conduction time scale, causes a large buildup in mean temperature. Thus we
found that our mean temperature, represented by 6y, was proportional to e~!. Also,
we noted that only 6y was that large; the other terms in the cosine series were smaller.

5.2. Mathematical Interpretations. When working with physical problems, it is
convenient to introduce dimensionless variables by dividing the dimensional variables
by characteristic scales. Not only does doing so reduce the number of parameters
in the problem by the Buckingham Pi theorem [6], but also those parameters that
remain provide insight into the physical processes at hand. In particular, they are
the ratios of scales associated with various dynamical processes (in our case, imposed
flux and conduction).

If two of the processes occur on widely disparate time scales, one of these ratios
(call it €) may become exceedingly small. In that case, one can write all the dependent
variables as series in €. By equating like powers of €, one obtains a simpler set of
equations to solve, and the solutions thus obtained are usually easier to analyze, as
in (3.9).

However, such a regular perturbation solution may not be valid everywhere, caus-
ing the problem to be of a singular nature. The solution may fail to hold near a
boundary. This often arises if a boundary condition cannot be satisfied; in our exam-
ple, (3.15) could not satisfy the initial condition. In this case a boundary layer may
need to be inserted: consult [1], [2], [3], [4], and [16] for more details.

Alternatively, the solution may not hold for all time. This usually is indicated by
the appearance of a secular term which for some range of ¢ is larger than the term
before it in the expansion. An interesting aside: Note that if we had not carried our
expansion to the next order, we would not have discovered the secularity. Therefore,
though highly unlikely, it is always possible that a secular term lurks in some “lower
order” term in the expansion, no matter how many terms we calculate or how carefully
we construct our expansion.
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If a secular term appears, a multiple-scale expansion technique is advisable. In
this case, one treats the solution as if the variables T' and 7 were independent, rather
than related through the variable t. By introducing the slow-time variable 7, one can
then suppress any secularities by solving appropriate equations for the functions of 7.

The theory of multiple-scale expansions has been applied extensively to perturbed
oscillators; the interested student can find canonical examples in [1], [2], [3], [4].

6. Nomenclature.

6.1. Variables and Parameters. Units are listed in terms of length (L), mass
(M), temperature (©), or time (7). If the same letter appears both with and with-
out tildes, the letter with a tilde has dimensions, while the letter without a tilde is
dimensionless. The equation where a quantity first appears is listed, if appropriate.

arbitrary function of integration

A(r):
( arbitrary function of integration

)
):
. heat capacity of the rod at constant pressure, units
L*T207! (2.1a)
F(7): function in multiple-scale expansion, defined by
F(r) = f(r) (4.23)

f():  dimensionless function describing imposed flux oscillations (2.4b)
gn(T): arbitrary function in multiple-scale expansion (4.10a)
hn(7): arbitrary function in multiple-scale expansion (4.11a)

heat flux, units M7 3 (2.1a)

thermal conductivity, units MLT 3071 (2.1b)
length of rod, units L (2.1a)

indexing variable (3.1)

fast time variable, value ¢ (4.1)

dimensional time, units 7" (2.1a)

dimensional length, units L (2.1a)

the integers

dummy variable (3.4)

ratio of frequencies, considered to be small, value w/w. (2.9)
temperature incorporating both scales (4.1)
dimensional temperature, units © (2.1a)

density of the rod, units ML~3 (2.1a)

slow time variable, value et (3.10)

arbitrary function in multiple-scale expansion (4.18)
temperature in slow-time coordinates (3.10)
frequency of flux oscillations, units 7% (2.4b)
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6.2. Other Notation.

c:  as a subscript, used to indicate a characteristic value (2.4b)
n € Z: as a subscript, used to indicate a term in a cosine
expansion (3.1); as a superscript, used to indicate a term in a
perturbation expansion in € (3.5)
used to denote the mean of the temperature
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