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Abstract. Many cellular reactions involve a reactant in solution bind-
ing to or dissociating from a reactant con"ned to a surface. This is true
as well for a BIAcoreTM, an optical biosensor that is widely used to
study the interaction of biomolecules. In the #ow cell of this instru-
ment, one of the reactants is immobilized on a #at sensor surface while
the other reactant #ows past the surface. Both di!usion and convection
play important roles in bringing the reactants into contact. Usually
BIAcoreTM binding data are analyzed using well known expressions
that are valid only in the reaction-limited case when the DamkoK hler
number Da is small. Asymptotic and singular perturbation techniques
are used to analyze dissociation of the bound state when Da is small
and O (1). Linear and nonlinear integral equations result from the
analysis; explicit and asymptotic solutions are constructed for phys-
ically realizable cases. In addition, e!ective rate constants are derived
that illustrate the e!ects of transport on the measured rate constants.
All these expressions provide a direct way to estimate the rate con-
stants from BIAcoreTM binding data.
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1. Introduction

Many chemical reactions of interest in biological systems are two-
component reactions involving a reactant con"ned to a surface and
a reactant dispersed in a volume. For instance, the cytoplasmic tails of
receptors embedded in the plasma membrane interact with signaling
and adapter molecules in the cytoplasm [3]. Maternal immuno-
globulins are transmitted via mother's milk to the circulation of a new-
born through binding to receptors on intestinal epithelial cells [10].
Gene expression is signi"cantly in#uenced by DNA-protein interac-
tions in these geometries [11].

In order to understand such reactions better, accurate measure-
ments of the rate constants that describe the reactions are required.
For example, for a monovalent ligand interacting with a binding site
on a receptor, one needs to determine the association rate constant
kI
!

and the dissociation rate constant kI
$

for the reaction. The
BIAcoreTM is a popular device that uses the optical phenomenon of
surface plasmon resonance (SPR) to provide real-time measurements
of binding from which rate constants can be determined. The con"g-
uration of the BIAcoreTM is described in great detail elsewhere [4, 11].
For our purposes, it is su$cient to know that the device consists of
a rectangular channel through which one of the reactants (the analyte)
#ows. The other reactant, to which we refer as the receptor (also called
the immobilized ligand), is coupled to the sensor surface on the ceiling
of the channel, and real-time measurements of the mass change at the
sensor surface are made as the reaction proceeds and bound-state
complexes are formed and break up.

The rate constants may be calculated from the BIAcoreTM data
once an appropriate mathematical model has been formulated.
Though the full mathematical model includes a convection-di!usion
system coupled with the reaction at the surface, most authors de-
couple the reaction kinetics from the transport dynamics. When one
does so, the standard chemical kinetic equations that describe a bi-
molecular interaction occuring in a well mixed system result, and they
are easily solved in terms of exponentials [9]. Unfortunately, this
decoupling is valid only when the parameter values are in certain
ranges [4].

If the parameters do not fall in these ranges, transport e!ects
must be included in the analysis. Rather than modeling the full
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convection-di!usion system, some authors prefer to introduce a new
&&mass transfer coe$cient'' to account for di!usive e!ects [4, 7]. There
have been some numerical simulations [2, 8] and modeling [5] of all
the dynamics in similar systems, but few analytical studies have been
undertaken.

Following the work in association kinetics in [1], we consider
the full convection-di!usion system for dissociation kinetics. Using
perturbation techniques, we reduce the full set of equations to an
integrodi!erential equation at the boundary. If the DamkoK hler
number (Da) is small, the transport and kinetic e!ects decouple and
the equations reduce to the well-known case. Using Da as a small
parameter, we construct the "rst-order correction to the reaction-
limited case caused by small transport e!ects. The form of the regu-
lar expansions suggests a multiple-scale expansion, which is also
constructed.

However, due to the nature of the BIAcoreTM device, it is often
di$cult to design an experiment where Da"o (1). Therefore, we also
analyze the system when Da"O(1) and di!usion and reaction e!ects
balance. A nonlinear integral equation results, but the rate constants
can easily be estimated from a short-time solution for the bound-state
concentration.

Due to the nature of the underlying operator, a series solution may
be constructed for the bound concentration in all cases, though the
convergence is faster when Da;1. The "rst several terms in this series
are derived for both association and dissociation kinetics, and it is
shown how this series can lead to a simple ordinary di!erential evolu-
tion equation. This equation is asymptotic to the true solution to
leading two orders, and an excellent approximation to leading three
orders. In addition, the ODE has coe$cients that can easily be inter-
preted as e!ective rate constants, which show how transport e!ects
perturb the interpretation of measured data.

2. Governing equations

Because the width of a BIAcoreTM #ow cell is ten times wider than its
height, the BIAcoreTM #ow cell can be modeled as a two-dimensional
channel, closed at top and bottom, with length ¸ and height h. Analyte
molecules are convected down the channel in a standard two-
dimensional Poiseuille #ow with maximal velocity </4. Receptor
molecules are embedded along the channel ceiling and real-time
measurements of the progress of the reaction are taken via measure-
ments of re#ected light [11].
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The proper dimensionless governing equations for the model have
already been derived [1]. The analyte #ow is governed by

LC
Lt

#

"Pe~1Ae2
L2C
Lx2

#

L2C
Ly2B!y(1!y)

LC
Lx

, 06x61, 06y61, (2.1)

where C is the dimensionless form of the analyte concentration nor-
malized by C

T
, the upstream concentration imposed during the associ-

ation part of the experiment, t
#

is the convective time scale (i.e.,
t
#
"<tJ /¸, where tJ is the time since the start of the experiment), x is the

normalized distance along the channel, y is the normalized distance
below the reacting surface, and e"h/¸ is the aspect ratio of the
channel, which will always be considered small. (For more detailed
analysis of parameter sizes, see [1].) Pe is the PecleH t number for the
system, which will always be considered large:

DI /h2

</¸
"A

convective rate of mass transfer
diffusive rate of mass transfer B

~1
,Pe~1, (2.2)

where DI is the molecular di!usion coe$cient for the analyte.
The concentration of the analyte does not change as it exits the

channel (x"1), and there is no di!usive #ux through the #oor of the
channel (y"1):

LC
Lx

(1, y, t
#
)"0, (2.3)

LC
Ly

(x, 1, t
#
)"0. (2.4)

At the binding surface y"0, the #ux into the surface is equal to the
rate of change of the bound receptor concentration:

LB
Lt

#

"D
LC
Ly

(x, 0, t
#
), D,

DI C
T
/R

T
h

</¸
, (2.5)

where B is the bound receptor concentration normalized by R
T
, the

total number of receptor sites, and D (always considered to be small) is
a normalized di!usion coe$cient. The binding itself is governed by
a Malthusian dissociation term and a bimolecular production term:

LB
Lt

#

"k
!
[(1!B)C(x, 0, t

#
)!KB], k

!
"

kI
!
C

T
¸

<
, K"

kI
$

kI
!
C

T

. (2.6)

Here K is a dimensionless form of the equilibrium dissociation con-
stant for the system, kI

!
is the association rate constant, and kI

$
is the

536 D. A. Edwards et al.



dissociation rate constant. Also of interest is the dimensional equilib-
rium dissociation constant for the system, which is given by

KI "KC
T
"

kI
$

kI
!

. (2.7)

3. Dissociation kinetics

In Sects. 4 and 5 of this paper, we present two new ways of analyzing
this problem: namely, e!ective rate constants and series solutions. We
wish to compare the results thus obtained in the case of dissociation
kinetics with those derived with more standard techniques, which we
present in this section.

Due to the underlying linear nature of the transport equation (2.1)
for C, the analysis is quite analogous to that in [1], which treats the
case of association kinetics only. Therefore, we summarize the analysis
in [1] (to which the interested reader is directed for the details),
pointing out those features that are di!erent in the dissociation problem.

In the dissociation phase of the experiment, there is no analyte
entering the channel:

C (0, y, t
#
)"0. (3.1)

We assume that binding is allowed to proceed long enough for a steady
state to be established before dissociation is initiated. Thus, for initial
conditions we use the steady-state solutions from the association
phase [1]:

C (x, y, 0)"1, (3.2a)

B(x, 0)"
1
a
, a"K#1. (3.2b)

Since the PecleH t number is large in these systems, on the convective
time scale t

#
the analyte concentration C quickly equilibrates to C,0

throughout most of the channel. This convective time scale is much
faster than the reaction time scale, and thus B remains at its initial
value on this time scale.

In the so-called &&unstirred'' boundary layer near the reacting
surface, the e!ects of convection and di!usion balance. Therefore,
C equilibrates on a slower di!usive time scale. The relevant scalings
for time and space are given by

t
D
"Pe~1@3t

#
, g"Pe1@3y, (3.3a)

C (x, y, t
#
)"C

D
(x, g, t

D
), B(x, t

#
)"B

D
(x, t

D
), (3.3b)
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where the subscript D indicates that we are now using the di!usive time
scale. (This agrees with the scaling in [5].)

Substituting Eqs. (3.3) into Eqs. (2.5) and (2.6), we obtain the
following, to leading orders:

LB
D

Lt
D

"D
D

LC
D

Lg
(x, 0, t

D
), D

D
,DPe2@3, (3.4a)

LB
D

Lt
D

"k
!
Pe1@3C(1!B

D
)C

D
(x, 0, t

D
)!KB

DD. (3.4b)

Combining Eqs. (3.4), we have

LC
D

Lg
(x, 0, t

D
)"Da[(1!B

D
)C

D
(x, 0, t

D
)!KB

D
], Da,

k
!
Pe1@3
D

D

. (3.5)

Here Da is the DamkoK hler number for the system, which measures the
ratio of the reaction rate to the di!usion rate.

In the physically realizable cases we wish to consider, either Da;1
or D

D
;1. Therefore, we see from either (3.4a) or (3.5) that the bound

state does not involve on this time scale, either. Since the evolution of
the bound state occurs on a slower time scale than t

D
, we introduce the

following new variables, including the reaction time scale t:

t"k
!
Pe1@3t

D
"kI

!
C

T
tJ , (3.6a)

C(x, y, t
#
)"C

,
(x, g, t)#o (1), B(x, t

#
)"B

,
(x, t)#o (1), (3.6b)

where k
!
Pe1@3;1. In Eqs. (3.6) we have omitted a subscript on t for

notational simplicity, since it is this time scale, on which the reaction
occurs, that will be of the most interest.

Substituting Eqs. (3.6) into Eqs. (2.1), (3.1), (3.2b), (2.5), and (2.6), we
obtain, to leading orders,

g
LC

,
Lx

"

L2C
,

Lg2
, (3.7)

C
,
(0, g, t)"0, C

,
(x, R, t)"0, (3.8)

B
,
(x, 0)"

1
a
, (3.9)

LC
,

Lg
(x, 0, t)"Da

LB
,

Lt
, (3.10)

LB
,

Lt
"(1!B

,
)C

,
(x, 0, t)!KB

,
. (3.11)
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where the second equation in (3.8) arises from matching the analyte
concentration in the unstirred layer to that in the channel.

The BIAcoreTM device measures the quantity

BM
,
(t)"

1
x
.!9

!x
.*/
P

x.!9

x.*/

B
,
(x, t) dx, (3.12)

where x
.*/

is a "nite distance away from 0 and x
.!9

is a "nite distance
away from 1. The nature of the operator in Eq. (3.7) indicates that
a boundary layer would be necessary near x"1 to smooth the
transition between the solution to Eq. (3.7) and the boundary condition
arising from Eq. (2.3). Since this boundary layer is outside the range of
measurement for the BIAcoreTM, we did not substitute the new vari-
ables into Eq. (2.3), and we shall neglect consideration of it in all further
analysis.

The solutions to our system will depend on the parameters K and t,
which itself depends on k

!
. Therefore, we see that by taking measure-

ments of BM and comparing the results with our solutions, we shall
obtain estimates for K and k

!
. Since C

T
is known for each experi-

ment, one can easily estimate kI
!

and kI
$
, which is the end goal of this

process.
In the following two sections we examine two cases of physical

interest. The case names are those given in [1].

3.1. Case 1 (Da;1)

The leading-order behavior of the bound concentration is easy to
deduce, as others have done [9]. Unfortunately, in order to get measur-
able readings from the BIAcoreTM, it is usually necessary to increase
R

T
. Since DaJR

T
, the resulting increase in Da can reduce the e!ec-

tiveness of the leading-order expansion at predicting rate constants.
Therefore, we shall calculate the "rst two orders of the bound concen-
tration in the limit of small Da. This added term in the expansion
will allow us to increase the range of Da for which our expansion is
valid.

We note from (3.10) that in the case of small Da, the reaction rate
does not contribute an O (1) #ux of analyte, and thus to leading order
C

,
, which has equilibrated to zero on the di!usive time scale, is

undisturbed. Therefore, we write our solutions in the following series:

C
,
(x, g, t)"DaC

1
(x, g, t)#o(Da),

(3.13)

B
,
(x, t)"B

0
(x, t)#DaB

1
(x, t)#o(Da).
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Since to leading order there is no analyte to drive a forward
reaction, the equation for B

0
contains only the dissociation term:

LB
0

Lt
"!KB

0
, (3.14a)

dB1
0

dtJ
"!kI

$
BM

0
, (3.14b)

where the latter equation is in dimensional form and we have used
Eq. (2.7). Note that a plot of dBM

0
/dtJ vs. BM

0
will yield a straight line with

slope kI
$
, which is consistent with the dominance of dissociation.

Solving Eq. (3.14a) subject to Eq. (3.9), we "nd that

B
0
(x, t)"

e~Kt

a
"BM

0
(t). (3.15)

Of course, this is the standard type of exponential behavior one would
expect from Eq. (3.14a).

Substituting Eqs. (3.13) into Eqs. (3.7)} (3.11), we obtain the follow-
ing equations for B

1
and C

1
:

g
LC

1
Lx

"

L2C
1

Lg2
, C

1
(0, g, t)"0, C

1
(x,R, t)"0, (3.16)

LC
1

Lg
(x, 0, t)"

LB
0

Lt
, (3.17)

C
1
(x, 0, t)"

1
1!B

0
A
LB

1
Lt

#KB
1B, (3.18)

B
1
(x, 0)"0. (3.19)

To derive a solution, we introduce a Laplace transform in x into
Eqs. (3.16) and (3.18). The solution of the transformed equations is an
Airy function whose derivative at g"0 can be readily computed. We
then substitute this result into the Laplace transform of Eq. (3.17). The
resulting expression may be manipulated and inverted to yield

1
1!B

0
A
LB

1
Lt

#KB
1B"

K
31@3C(2/3) P

x

0

B
0
(x!m, t)

dm
m2@3

. (3.20)

Since B
0

is independent of x, the equation immediately simpli"es to

LB
1

Lt
#KB

1
"

32@3Kx1@3

C(2/3)
B

0
(1!B

0
), (3.21a)

B
1
"

32@3Kx1@3e~Kt

aC(2/3) At#
e~Kt!1

Ka B, (3.21b)

where we have used Eqs. (3.19) and (3.15).
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The t term in Eq. (3.21b) is a secular one due to the forcing of the
operator in Eq. (3.21a). Thus for t"O(Da~1), the second term in the
expansion (3.13) would be comparable in size to the "rst term. There-
fore, a multiple-scale expansion is desirable, and hence we should use
Eq. (3.21b) as an aid in determining the parameters only for times that
are o (Da~1). Unfortunately, the results of the multiple-scale expansion
will not be particularly illuminating, and thus we also construct the
next-order correction to the averaged quantity:

BM
1
(t)"

x4@3
.!9

!x4@3
.*/

x
.!9

!x
.*/

35@3Ke~Kt

4aC(2/3) At#
e~Kt!1

Ka B. (3.22)

To suppress the secularity in Eq. (3.21b), we introduce the new
variables

q"Dat, ¹"[1#O(Da2)]t, C
,
(x, g, t)"Dac

1
(x, g, q, ¹)#o(Da),

B
,
(x, t)"b

0
(x, q, ¹)#Dab

1
(x, q, ¹)#o(Da).

Since to leading order the analyte concentration is still undisturbed, we
see that (3.14a) holds with the partial derivative with respect to t re-
placed by a partial derivative with respect to ¹, and hence (3.15)
becomes

b
0
(x, q, ¹)"a (x, q)e~KT, a(x, 0)"

1
a

. (3.23)

The solution steps proceed as above; the expression analogous to
(3.20) is

1
1!b

0
A
Lb

1
L¹

#

Lb
0

Lq
#Kb

1B"
K

31@3C(2/3)P
x

0

b
0
(x!m, q, ¹)

dm
m2@3

, (3.24)

where the e!ect of the two time scales may be seen on the left-hand side.
Rewriting (3.24), we obtain the following:

Lb
1

L¹
#Kb

1
"e~KTC!

La
Lq

#

K
31@3C(2/3) P

x

0

a (x!m, q)
m2@3

dmD#2,

where the unlisted terms do not contribute to the secularity. Sup-
pressing the secularity, we obtain

a (x, q)"
1
a

=
+
n/0

(rqx1@3)n
C(1#n/3) n!

, r"
KC(1/3)

31@3C(2/3)
. (3.25)

Though a(x, q) is exponentially growing in q, when combined with
Eq. (3.23) and written in the original variables, we see that the solution
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behaves like
e~(K~mD!)t, tPR,

for some positive constant m, which obviously decays. We note that if
we substitute Eq. (3.25) into Eq. (3.23) and retain the "rst two terms for
small q, the results replicate the divergent behavior in Eq. (3.21b) as
well as the expression for B

0
previously given in Eq. (3.15).

For comparisons with experimental data, we must calculate bM
0
,

which is found using Eq. (3.23):

bM
0
(q, ¹)"

I[a;x
.!9

]!I[a;x
.*/

]
x
.!9

!x
.*/

e~KT, I[ f ; x],P
x

0

f (m) dm.

(3.26a)

I[a;x] is easily calculated using Eq. (3.25):

I[a; x]"
x
a

=
+
n/0

(rqx1@3)n
C(2#n/3) n!

. (3.26b)

Because of the complicated nature of Eq. (3.26b), it is best to revert to
Eqs. (3.15) and (3.22) when actually calculating parameter values. We
generate the graphs for t"o (Da~1) with the "rst two terms of the
expansion given by Eqs. (3.15) and (3.22).

Figure 1 shows a graph of BM
0

[as given by Eq. (3.15)] vs. the
dimensional time tJ (in seconds), since this is how the constants would be
determined in a given experiment. [The conversion between t and tJ is
given in Eq. (3.6a).] The parameters used are listed in Table 1; they are
the same as in [1].

Figure 2 illustrates the di!erences between the regular and multiple-
scale expansions. The thin line is the correction to BM

0
from the regular

expansion, given by DaBM
1

in Eq. (3.22). The correction to BM
0

from the
multiple-scale expansion is bM

0
!BM

0
. The thick line is the graph of this

quantity as given by Eq. (3.26a) using the "rst six terms of Eq. (3.26b).

3.2. Case 3a (Da"O(1), D
D
;1)

As mentioned earlier, to obtain accurate measurements, R
T

(and hence
Da) must be increased. Often, this forces Da to be O (1) . In this case,
reaction and di!usion balance. The solution proceeds in an analogous
way as above [1]. In particular, we may consider C

1
to be analogous to

C
,
, and the analogue of Eq. (3.20) is given by

1
1!B

,
A
LB

,
Lt

#KB
,B"!

Da
31@3C(2/3) P

x

0

LB
,

Lt
(x!m, t)

dm
m2@3

. (3.27)
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Fig. 1. Leading-order average bound state concentration (BM
0
) vs. dimensional

time (tJ ).

Table 1. Parameter values

Given Calculated

Parameter Value Parameter Value

Necessary parameters
C

T
(mol/cm3) 10~10 r 1.37

Da 10~1 ¹ 10~2 tJ /s
K 1 t 10~2 tJ /s
kJ
!
(cm3mol~1 s~1) 108 a 2

x
.!9

7.92]10~1 c 1.37]10~1

x
.*/

2.08]10~1 d 1.20]10~1

q 10~3 tJ /s

Ancillary parameters
DI (cm2/s) 2.8]10~7 D 5.25]10~4

h (cm) 5]10~3 D
D

6.85]10~2

Pe 1.49]103 Da
#

1.56
e 2.08]10~2 kI

$
(s~1) 10~2

R
T

(mol/cm2) 6.39]10~13

In the limit that DaP0, Eq. (3.27) reduces to the evolution equation
(3.14a) for B

0
, as expected.

Equation (3.27) is a variant of a nonlinear Abel equation. Unfortu-
nately, due to the singular nature of the kernel, standard techniques of
analysis fail. Therefore, we again use an asymptotic solution. The
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Fig. 2. Correction to BM
0

from uniform expansion (bM
0
, thick line) and next term in

regular expansion (BM
1
, thin line) vs. tJ .

details of the calculations are given in [1]; we adapt them for use here.
In the association problem, Edwards assumes a solution of the form

B
,
(x, t)"b

1
(x)t#o(t),

where b
1
(x) is the deviation of the solution from the initial condition

(zero in the association problem). Motivated by this, in our problem we
assume a solution of the form

B
,
(x, t)"

1
a
!b

1
(x)t#o(t).

Note that again, b
1
(x) is the deviation of the solution from the initial

condition. After careful calculation, one "nds that the b
1

functions for
both problems are identical!

This rather surprising result can be explained by noting that in both
systems the bound state is being disturbed either by a (dimensionless)
value of the analyte of 1 or 0. Thus, either the association or dissocia-
tion process proceeds (at least initially) unencumbered by changes in
the analyte concentration due to transport.

Since the initial state is given by 1/a, we may use it to obtain the
value of K. However, K is only the ratio of the rate constants. In order
to calculate both rate constants individually, we construct a linear "t
for the absolute value of the slope S of the small-time data measure-
ments. This "t will then yield kI

!
. Then using our value for K, we may

calculate kI
$
.
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Due to the similarities in the underlying expressions, the asymptotes
of S for small and large kI

!
are as given in [1], but we must reinterpret

them in the dissociation context:

S\
kI
$

K#1
, kI

!
P0. (3.28)

Note that for "xed "nite K, SP0 as kI
!
P0 since K is the ratio of the

rate constants. Equation (3.28) merely shows that if there is no forward
reaction (kI

!
"0), then the bound state will decay in a purely exponen-

tial way. This may be con"rmed by expanding Eq. (3.15) for small t and
retaining the "rst two terms; the absolute value of the slope of the
resulting linear approximation is given by Eq. (3.28).

For large kI
!
, the asymptote is

S\
34@3C

T
<1@3DI 2@3(x2@3

.!9
!x2@3

.*/
)

2C(1/3)R
T
¸1@3h1@3(x

.!9
!x

.*/
)
, kI

!
PR. (3.29)

Therefore, due to the "nite rate of transport of dissociated analyte
from the unstirred layer, there is a "nite limit to the speed at which
the reaction can proceed. The limit is independent of any of the rate
constants in the problem since it is dependent on the speed of the
transport.

4. E4ective rate constants

4.1. Dissociation

To interpret the e!ects of transport more carefully, we approximate the
evolution equation for B in a way that yields e!ective rate constants.
To do so, we introduce the following new variables:

c"!

DaAi(0)
Ai@(0)

"Da
#
Pe~1@3, Da

#
"

kI
!
R

T
DI /h C

C(1/3)
31@3C(2/3) D, (4.1)

z"c3x"A
kI 3
!
R3

T
h

<DI 2 B
xJ
3 C

C(1/3)
C(2/3)D

3
"

Da3
#

Pe
xJ
¸

, (4.2a)

g
%
"cg"

kI
!
R

T
DI

yJ C(1/3)
31@3C(2/3)

"Da
#

yJ
h
, (4.2b)

C
,
(x, g, t)"C

$,%
(z, g

%
, t)#o(1), B

,
(x, t)"B

$,%
(z, t)#o(1), (4.3)

where xJ and yJ are the dimensional measurements along and below the
channel ceiling. Here Da

#
is the DamkoK hler number for the convective
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region and the subscript &&e'' refers to the fact that these solutions will
be used to interpret e!ective rate constants. We note from the equali-
ties in Eqs. (4.2) that the actual dimension of the channel (h or ¸) is no
longer in the scaling for the relevant variable. Thus, we have now
discarded geometric scalings for ones associated with the dynamics of
the system.

Substituting Eqs. (4.1)}(4.3) into Eqs. (3.7)}(3.11), we obtain, to
leading orders,

L2C
$,%

Lg2
%

"g
%

LC
$,%

Lz
, (4.4)

C
$,%

(0, g
%
, t)"0, (4.5)

LC
$,%

Lg
%

(z, 0, t)"!

Ai@(0)
Ai(0)

LB
$,%

Lt
, (4.6a)

C
$,%

(z, 0, t)"
1

1!B
$,%
A
LB

$,%
Lt

#KB
$,%B,g (z, t), (4.6b)

C
$,%

(z,R, t)"0, (4.7)

B
$,%

(z, 0)"
1
a

. (4.8)

In order for a matching condition like Eq. (4.7) to be a valid condition
for our physical system, g

%
must be a boundary-layer variable. Hence,

we must have that Da
#
<1. In Eq. (4.4), time evolution of the analyte

concentration has been neglected. For this to be a valid approxima-
tion, we must have that D

D
;1.88Da. We note from Table 1 that both of

these conditions are satis"ed only weakly. However, we shall show in
this section that even in this case we obtain highly accurate solutions.

As in Sect. 3.1, we take a Laplace transform of Eqs. (4.4) and (4.6a)
in the z-direction subject to Eq. (4.5). The solution in Laplace-
transform space is proportional to an Airy function (this is why
Eq. (4.6a) is scaled to have the peculiar coe$cient on the right-hand
side). We introduce the following notation for the Laplace transform:

fK (s)"P
=

0

f (z)e~sz dz, f (z)"
1

2ni PC fK (s)esz ds,

where C is the Bromwich contour. The solution of this system is

CK
$,%

(s, 0, t)"!

1
s1@3

dB]
$,%

dt
. (4.9)
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Substituting Eq. (4.9) into the Laplace transform of Eq. (4.6b), we have

!

1
s1@3

dB]
$,%

dt
"gL . (4.10)

We note that Eq. (4.10) is exact in that it follows without approxi-
mation once we have reduced to the form Eq. (4.4). Equation (4.10)
cannot be inverted in closed form, so we expand B

$,%
in a series of

powers of z1@3:

B
$,%

(z, t)"
=
+
n/0

zn@3q
$,n

(t), q
$,0

(0)"
1
a
, q

$,n
(0)"0, (4.11)

where the initial conditions on q
$,n

follow from Eq. (4.8). For our series
solution to work, z must be small. Though one obvious way to obtain
small z is to set Da small (as was done in the previous sections), we see
from Eq. (4.2a) that we need not do so.

There is an alternative dominant balance in Eq. (4.10), but it leads
to a series that diverges like z~1@3 as zP0. Upon substituting the
Laplace transform of Eq. (4.11) into Eq. (4.10) and inverting, we have
the following:

(1!B
$,%

)
=
+
n/0

C(n/3#1)z(n`1)@3

C((n#1)/3#1)
dq

$,n
dt

"!A
LB

$,%
Lt

#KB
$,%B. (4.12)

We note that the left-hand side is O (z1@3), and hence to leading
order, we have

dq
$,0

dt
#Kq

$,0
"0, (4.13)

which is the same operator as in Eq. (3.14a). Averaging Eq. (4.11), we
obtain

BM
$,%

(t)"q
$,0

(t)#
=
+
n/1

d
n
q
$,n

(t), d
n
"

3(zn@3`1
.!9

!zn@3`1
.*/

)
(n#3)(z

.!9
!z

.*/
)
. (4.14)

Here d
n
is simply the term that results when we integrate zn@3 over the

scanning range. The notation d has been chosen to emphasize that for
this expansion to have any utility, the d

n
must be small. Averaging

Eq. (4.13), we have the following:

dBM
$,%

dt
#KBM

$,%
"O(d

1
). (4.15)

Note that if z is small because Da is small, O(d
1
)"O (Da).
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Continuing to expand Eq. (4.12), we have

z1@3(1!q
$,0

)
C(4/3)

dq
$,0

dt
"1!B

$,%
!A

LB
$,%

Lt
#KB

$,%B#O(z2@3),

which, upon averaging, yields

dBM
$,%

dt
"!

KBM
$,%

1#d (1!BM
$,%

)
#O(H), (4.16a)

d"
d
1

C(4/3)
"

9c(x4@3
.!9

!x4@3
.*/

)
4C(1/3)(x

.!9
!x

.*/
)
, (4.16b)

H"d
2
#d2

1
"c2C

3(x5@3
.!9

!x5@3
.*/

)
5(z

.!9
!x

.*/
)
#

9(x4@3
.!9

!x4@3
.*/

)2
16(x

.!9
!x

.*/
)2D. (4.16c)

The "rst term in H comes from the averaging of the O (z2@3) term; the
second arises from the product of errors in the expression for
BM
$,%

(1!BM
$,%

). Note that if z is small because Da is small, O (H)"
O(Da2).

We note that the d term in Eq. (4.16a) describes the e!ect on
the evolution of the bound state caused by the fact that the analyte is
not in equilibrium at the concentration zero. As the bound state
dissociates, the analyte concentration is small, but nonzero, in the
unstirred layer. Thus, there is a small possibility for rebinding.
Therefore, the equilibrium constant K is reduced by a factor of
1#d(1!BM

$,%
). Transforming to dimensional parameters, one sees

that determining kI
$
by "tting the standard model (4.13) to dissociation

data will lead to an underestimate of the dissociation rate constant by
the same factor.

The 1!BM
$,%

term is the average concentration of vacant receptor
sites available for rebinding. Lastly, we note that Eq. (4.16a) may be
rewritten as

dBM
$,%

dt
"!KBM

$,%
(1!p)#O(H), p"

d (1!BM
$,%

)
1#d(1!BM

$,%
)

(4.17)

where p is the probability that an analyte that dissociates will rebind to
a receptor on the sensor surface rather then be swept out of the #ow
cell.

We can indeed solve Eq. (4.16a), though the e!ective rate constant
in the interpretation of Eq. (4.16a) was the desired outcome. We denote
the exact solution of the operator in Eq. (4.16a) (without the O (H))
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Fig. 3. Correction to BM
0

from bM
0

(thick line), solution of e!ective rate constant
equation (E

$
, medium line) and BM

1
(thin line) vs. tJ .

by E
$
. Thus we have

dE
$

dt
"!

KE
$

1#d (1!E
$
)
, (4.18a)

e~d(E$~1@a)(aE
$
)1`d"e~Kt, (4.18b)

where we have used Eq. (4.8). Since B
$,%

is independent of z to leading
order, we note that E

$
will provide the "rst two orders of the solution.

Unfortunately, due to the z1@3 dependence of the next term for B
$,%

,
a simple ODE cannot be derived which is asymptotic to third order.
However, as will be shown in the next section, Eq. (4.18b) actually
approximates the solution quite well to the "rst three orders.

We now analyze the correction to BM
0

given by E
$
. Using the

parameters in Table 1, Fig. 3 is a replot of Fig. 1 with the addition of
the plot of the correction E

$
!BM

0
, indicated by the line of medium

thickness. Note that, as expected, all corrections are O (Da).

4.2. Association

We repeat the analysis in Sect. 4.1 for association kinetics. The general
formulation of the problem is discussed in detail in [1]; we merely
extract those portions of the analysis relevant for the work at hand.
During association kinetics, C(0, y)"1 since we choose to normalize
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the dimensional analyte concentration by the upstream value. There-
fore, the zeroes in the boundary and matching conditions (4.5) and (4.7)
are replaced by ones. These changes roughly mean that the sum of the
dissociaion analyte solution and the association analyte solution is 1.
This causes an adjustment in our de"nition of the Dirichlet condition
g, and the analogue of Eq. (4.12) is given by

(1!B
!,%

)
=
+
n/0

C(n/3#1)z(n`1)@3

C((n#1)/3#1)
dq

!,n
dt

"1!B
!,%

!A
LB

!,%
Lt

#KB
!,%B.
(4.19)

Following the steps in Sect. 4.1, to leading order we obtain

dq
!,0

dt
#Kq

!,0
"1!q

!,0
,

the averaged "rst-order equation is

dBM
!,%

dt
#aBM

!,%
"1#O(d

1
), (4.20a)

and the averaged second-order equation is the following:

dBM
!,%

dt
"

1!aBM
!,%

1#d(1!BM
!,%

)
#O (H). (4.20b)

After a suitable change in notation, Eq. (4.20b) with x
.*/

"0 and
x
.!9

"1 agrees with Eqs. (32a) and (32b) in Mason et al. [6]
The initial condition for B

!,%
may be arbitrary, but we choose the

physically realizable case where it is uniformly zero. With this initial
condition, we may solve Eq. (4.20b) (without the O (H)); denoting the
solution by E

!
, we have

e~dE!(1!aE
!
)1`ds"e~at, s"

K
a

. (4.21)

The agreement between E
!

and the association solution is similar to
that shown in Sect. 4.1 for the dissociation kinetics; this will be shown
in more detail in Sect. 5.2.

5. Series solutions

5.1. Dissociation

In order to ascertain the accuracy of the evolution equation (4.16a),
we construct series solutions for B

$,%
. By substituting Eq. (4.11) into
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Eq. (4.12), we obtain the following series of equations:

=
+
n/0

zn@3C
dq

$,n
dt

#Kq
$,nD"z1@3C

=
+
n/0

zn@3
n
+
j/0

C( j/3#1)
C(( j#1)/3#1)

q*
$,n~j

dq
$, j

dt D,
(5.1a)

q*
$,n

(t)"G
q
$,0

(t)!1, n"0,
q
$,n

(t), else.
(5.1b)

The right-hand side of Eq. (5.1a) is always known, since due to the
presence of the extra z1@3 term, these are forcing terms to the operator
on the left-hand side, which appears at all orders.

In particular, we generate the "rst three terms in the expansion:

dq
$,0

dt
#Kq

$,0
"0, (5.2a)

dq
$,1

dt
#Kq

$,1
"

1
C(4/3)

(q
$,0

!1)
dq

$,0
dt

, (5.2b)

dq
$,2

dt
#Kq

$,2
"

1
C(4/3)

q
$,1

dq
$,0

dt
#

C(4/3)
C(5/3)

(q
$,0

!1)
dq

$,1
dt

. (5.2c)

Solving Eq. (5.2a) subject to the initial condition in Eq. (4.11), we have

q
$,0

(t)"
e~Kt

a
, (5.3)

which of course matches with Eq. (3.15). Substituting Eq. (5.3) into
Eq. (5.2b) and solving, we obtain the following:

q
$,1

(t)"
se~Kt

C(4/3) At#
e~Kt!1

Ka B, (5.4)

where we have used the initial condition in Eq. (4.11). We note that
Eq. (5.4) agrees with Eq. (3.21b).

Substituting Eqs. (5.3) and (5.4) into Eq. (5.2c) and using the initial
condition in Eq. (4.11), we obtain

q
$,2

(t)"
se~Kt

aC(4/3) G
e~2Kt!1

Ka C
1

2C(4/3)
#

C(4/3)
C(5/3)D

#

(at#1)e~Kt!1
a C

1
C(4/3)

#

C(4/3)
C(5/3)D

#

C(4/3)
C(5/3)C!t(a#1)#

Kat2
2

#

3(1!e~Kt)
K DH. (5.5)
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From Eq. (4.14) we have that the averaged expression is given by

BM
$,%

(t)"q
$,0

(t)#O(d
1
), (5.6a)

"q
$,0

(t)#d
1
q
$,1

(t)#O(d
2
), (5.6b)

"q
$,0

(t)#d
1
q
$,1

(t)#d
2
q
$,2

(t)#O(z
.!9

#z
.*/

). (5.6c)

We now examine the behavior of the second-order correction term
d
2
q
$,2

. Figure 4 shows the graph of d
2
q
$,2

as a thin line. The thick line
is the correction to q

$,0
#d

1
q
$,1

from using E
$
. Note the similarity

between the two graphs. Motivated by this fact, in Fig. 5 we graph the
di!erence between E

$
and q

$,0
#d

1
q
$,1

#d
2
q
$,2

. Note the incredibly
close agreement.

Why is the agreement so close? Inspired by Eq. (4.14), we expand
the "rst three terms of E

$
as

E
$
(t)"E

$,0
(t)#d

1
E

$,1
(t)#d

2
E

$,2
#O (d

3
). (5.7)

Substituting this series into Eq. (4.18a), we obtain, to leading three
orders,

dE
$,0

dt
#KE

$,0
"0, (5.8a)

dE
$,1

dt
#KE

$,1
"!

1
C(4/3)

(1!E
$,0

)
dE

$,0
dt

, (5.8b)

dE
$,2

dt
#KE

$,2
"A

d2
1

d
2
B

1
C(4/3)

(E
$,0

!1)
dE

$,1
dt

#C
d2
1

d
2

C(5/3)
C2(4/3)D

C(4/3)
C(5/3)

E
$,1

dE
$,0

dt
, (5.8c)

where the balance in Eq. (5.8c) comes from the fact that when Da is
small (as in Figs. 4 and 5), d2

1
"O (d

2
). The operators in Eqs. (5.8a) and

(5.8b) are exactly those in Eqs. (5.2a) and (5.2b), as they should be.
To examine the di!erence between Eqs. (5.8c) and (5.2c), we simplify

our coe$cient d2
1
/d

2
, yielding

d2
1

d
2

"

15
16C1!x

.*/
x
.!9A

x1@3
.!9

!x1@3
.*/

x4@3
.!9

!x4@3
.*/
B
2

D
~1

. (5.9)

Therefore, we see that d2
1
/d

2
715/16. To obtain an upper bound, we

examine the physically realizable case where the scanner is symmetric:
that is, when x

.*/
"1!x

.!9
. By symmetry arguments it is easy to see

that an extremum will be reached when x
.*/

"x
.!9

"1/2, and that
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Fig. 4. Second-order correction to series solution Eq. (5.6b) from series (d
2
q
$,2

, thin
line) and E

$
(thick line) vs. tJ .

Fig. 5. Third-order correction to series solution Eq. (5.6c) from E
$

vs. tJ .

extremal value is given by

lim
x.*/?1@2~

x.!9?1@2`

d2
1

d
2

"1.

Using this result, we obtain the following bounds:

15
16

6

d2
1

d
2

61, 1.066
d2
1
C(5/3)

d
2
C2(4/3)

61.13.
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Hence, due to the forms of the coe$cients, E
$

approximates the true
solution even more accurately than the order estimates indicate. Using
the parameters in Table 1, we have that

d2
1

d
2

"9.86]10~1,
d2
1

d
2

C(5/3)
C2(4/3)

"1.12,

which explains the close agreement in Figs. 4 and 5.

5.2. Association

For the association kinetics, the analogue of Eq. (5.1a) is given by

=
+
n/0

zn@3C
dq

!,n
dt

#aq
!,nD"1#z1@3C

=
+
n/0

zn@3
n
+
j/0

C( j/3#1)
C(( j#1)/3#1)

q*
!,n~j

dq
!,j

dt D .

Generating the "rst three terms in the expansion, we have the
following:

dq
!,0

dt
#aq

!,0
"1, (5.10a)

dq
!,1

dt
#aq

!,1
"

1
C(4/3)

(q
!,0

!1)
dq

!,0
dt

, (5.10b)

dq
!,2

dt
#aq

!,2
"

1
C(4/3)

q
!,1

dq
!,0

dt
#

C(4/3)
C(5/3)

(q
!,0

!1)
dq

!,1
dt

. (5.10c)

Solving Eqs. (5.10a) and (5.10b) subject to the zero initial condition
discussed earlier, we obtain

q
!,0

(t)"
1!e~at

a
, (5.11a)

q
!,1

(t)"
e~at

aC(4/3) A
e~at!1

a
!KtB. (5.11b)

Substituting Eqs. (5.11) into Eq. (5.10c), we have

q
!,2

(t)"
e~at

aC(4/3) G
1!e~2at

a2 C
1

2C(4/3)
#

C(4/3)
C(5/3)D

#

(Kt#1)e~at!1
a C

1
C(4/3)

#

C(4/3)
C(5/3)D

#

C(4/3)
aC(5/3)CK (K!1)t!

K2at2
2

#

3K(1!e~at)
a DH, (5.12)
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Fig. 6. Correction to "rst three terms of averaged series solution BM
!,%

from e!ective
rate constant equation solution E

!
vs. tJ .

and using these expressions in Eqs. (5.6) (with the subscript &&d'' re-
placed by &&a'') will yield the appropriate expressions for BM

!,%
.

If we check the agreement of E
!

to the "rst three terms in our
expansion for BM

!,%
, we obtain the following three equations:

dE
!,0

dt
#aE

!,0
"1, (5.13a)

dE
!,1

dt
#aE

!,1
"!

1
C(4/3)

(1!E
!,0

)
dE

!,0
dt

, (5.13b)

dE
!,2

dt
#aE

!,2
"A

d2
1

d
2
B

1
C(4/3)

(E
!,0

!1)
dE

!,1
dt

#C
d2
1

d
2

C(5/3)
C2(4/3)D

C(4/3)
C(5/3)

E
!,1

dE
!,0

dt
, (5.13c)

where the form of the series is as in Eq. (5.7) and the solution process is
as in Sect. 5.1. Therefore, we have the same close agreement, as shown
in Fig. 6.

5.3. Comparison with numerical results

In order to verify our analytical results, we compare our work with
numerical simulations of the problem. In particular, we compare our
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Fig. 7. Di!erence between three-term series and numerical solution vs. tJ .

work with results from the numerical code in [6]. This code solves the
full convection-di!usion system (2.1)}(2.6) using the method of lines.
We compare our work with a solution on a 96]96 grid, which
corresponds to a second-order error of approximately 10~4. The code
runs two simulations: an association experiment immediately followed
by a dissociation experiment.

To run comparisons, we calculated the di!erence between our
three-term series solutions given in Sects. 5.1 and 5.2 and results
generated by the numerical code in [6]. The results of the comparison
are shown in Fig. 7. The range tJ 3[0, 500] is the association phase, and
tJ 3[500, 1000] is the dissociation phase. As expected, the di!erence in
the results is O(z

.!9
#z

.*/
)"O(Da3)"O(10~3).

6. Conclusions

Key to the understanding of certain biological reactions are the values
of their association and dissociation rate constants. The advent of SPR
technology and its application in the BIAcoreTM device have allowed
scientists to measure the concentration of bound ligands precisely in
real time. However, in order to translate these measurements into
useful estimates of the rate constants, accurate mathematical models
are needed.

We summarized the relevant mathematical equations for the full
system from [1], which involves a convection-di!usion equation with
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a boundary reaction. We noted that the key dimensionless group is the
DamkoK hler number Da, which measures the ratio of the time scales of
reaction and di!usion. If Da;1, the reaction kinetics decouple from
the transport e!ects and to leading order our model produces the
well-known result for a well-mixed system [9]. The form of the next-
order correction for small Da suggested a multiple-scale expansion
that consists of an in"nite series of terms. Both the regular expansion
and a truncated version of the multiple-scale expansion provided
improved approximate solutions to the full system.

For many reactions of interest, the current SPR technology re-
quires one to work at a relatively high concentration of binding sites in
order to obtain accurate measurements of the bound concentration as
a function of time. This increase in R

T
often forces Da to be O(1). In this

case, the kinetic and transport e!ects are coupled and the nonlinear
integrodi!erential equation (3.27) results. However, one can obtain
important information about the rate constants by examining the
small-time linearization of the measured data. We indicated how this
small-time solution would change as k

!
varied. As k

!
P0, the reaction

is governed by a purely dissociative process. As k
!
PR, the speed of

the reaction asymptotes to a "nite value governed by the transport
process.

By introducing dynamical, as opposed to geometric, scalings, we
noted that the resulting operator (4.4) has series solutions in the
variable z. We used these series to construct an ordinary di!erential
equation for the evolution of BM

%
. This equation is in the form of

a standard chemical rate equation but with the rate constants replaced
by e!ective rate coe$cients. Not only is the equation easy to solve, but
also its coe$cients display in a simple way the e!ects of transport upon
the reaction. These e!ects involve the product of the average fraction of
sites available for rebinding 1!BM

%
and a parameter d which is a ratio

of the rate of reaction to the rate of transport. In terms of these
quantities, the probability that dissociation of a bound complex will
lead to the escape of the analyte from the sensor surface, rather than its
return to the surface and its rebinding, is 1!p"[1#(1!BM

%
)d]~1.

In addition, by constructing the actual series solutions in z, we
noted that the evolution equation is asymptotic to the true solution to
leading two orders and closely approximates the solution to leading
three orders. This shows why numerical solutions of the ordinary
di!erential equation with e!ective rate coe$cients agree so well with
numerical solutions of the full partial di!erential equation formulation
[6, 8]. In addition, we explicitly compared our results with simulations
of the full convection-di!usion system from [6], and found the answers
in close agreement.
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These results provide a solid framework from which other work
can be launched. In particular, the full model should provide informa-
tion regarding transport e!ects in more realistic geometries for
biological systems.
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Nomenclature

Variables and parameters

Units are listed in terms of length (¸), moles (N), or time (¹). If the same
letter appears both with and without tildes, the letter with a tilde has
dimensions, while the letter without a tilde is dimensionless. The
equation where a quantity "rst appears is listed, if appropriate.

a(x, q): amplitude function in two-time expansion (3.23).
B(x, t

#
): bound ligand concentration on channel ceiling y"0 at

position x and time t
#

(2.5).
b(x, q, ¹): bound ligand concentration in two-time expansion.

C: the Bromwich contour for inversion of a Laplace trans-
form.

C(x, y, t
#
): analyte concentration at position (x, y) and time t

#
(2.1).

c(x,g, q,¹): analyte concentration in two-time expansion.
DI : molecular di!usion coe$cient, units ¸2/¹ (2.2).

Da: the DamkoK hler number, which measures the ratio of
reaction and di!usion e!ects.

E(t): solution of the e!ective rate constant equation (4.18a).
f ('): arbitrary function (3.26a).

g (z, t): arbitrary Dirichlet data (4.6b).
H: error in second-order evolution equation for BM

%
(4.16c).

h: height of the channel, units ¸.
I[ ' ; x]: integration operator, de"ned in Eq. (3.26a) as

I[ f ; x],P
x

0

f (m) dm.

j : indexing variable (5.1a).
KI : equilibrium dissociation constant for system, de"ned as

kI
$
/kI

!
, units N/¸3.

kI
!
: binding rate, units ¸3/(N¹).

kI
$
: dissociation rate, units ¹~1.
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¸: length of the channel, units ¸.
m: arbitrary constant, variously de"ned.
n: indexing variable (3.25).

Pe: PecleH t number for the system, which measures the ratio of
convective to di!usive e!ects, de"ned as <h2/DI ¸ (2.1).

p: probability that an analyte molecule that dissociates will
rebind to a receptor on the sensor surface rather then be
swept out of the #ow cell (4.17).

q
n
(t): coe$cient of zn@3 in expansion of B

%
(4.11).

R
T
: total number of receptor sites, units N/¸2 (2.5).

r: dimensionless parameter, de"ned in Eq. (3.25) as
C(1/3)K/31@3C(2/3) .

S: absolute value of the slope of the short-time approxima-
tion for the evolution of BM

,
.

s: variable in Laplace transform space.
¹: variable in two-time expansion, de"ned as ¹"

[1#O (Da2)]t.
tJ : time from beginning of the dissociation experiment, units ¹.
<: four times the (maximal) velocity of #ow at center of

channel, units ¸/¹.
xJ : measure of length along the channel, units ¸.
yJ : measure of height below the binding surface, units ¸.
Z: the integers.
z: scaled measure of length along the channel, value c3x

(4.2a).
a: dimensionless constant, de"ned as 1#K (3.2b).

b
1
(x): term in expansion of B

,
(x, t) for small t.

c: dimensionless constant (4.1).
d: dimensionless constant measuring e!ects of transport

(4.14).
e: aspect ratio of the channel, de"ned as h/¸ (2.1).
g: stretched spatial variable in the y-direction, dimensionless

(3.3a).
m: dummy variable (3.20).
q: variable in two-time expansion, value Dat.
s: dimensionless constant, de"ned as K/a (4.21).

Other notation

a: as a subscript, used to indicate the association process.
c: as a subscript, used to indicate the convective time scale

(2.1).
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D: as a subscript, refers to variation on the time scale of
di!usion near the wall (3.3a).

d: as a subscript, used to indicate the dissociation process.
e: as a subscript, used to indicate e!ective rate constants

(4.2b).
k: as a subscript, refers to variation on the time scale where

the reaction causes the evolution of the bound state (3.6b).
max: as a subscript, used to indicate the right endpoint of the

scanning range (3.12).
min: as a subscript, used to indicate the left endpoint of the

scanning range (3.12).
n3Z: as a subscript, used to indicate an expansion in Da (3.13),

z (4.11), or d
n
(5.7).

T: as a subscript, used to indicate the total value of a
quantity (2.5).

*: as a superscript, used to indicate a modi"ed version of
q (5.1a).

6 : used to denote the mean of the bound concentration over
a subset of the boundary, de"ned in Eq. (3.12) as

BM
,
(t)"

1
x
.!9

!x
.*/
P

x.!9

x.*/

B
,
(x, t) dx.

] : used to indicate the Laplace transform of a quantity.
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