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Estimating rate constants in a convection�diffusion system with a
boundary reaction
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While performing biomolecular interaction analysis (BIA), scientists often use surface
plasmon resonance (SPR) to measure rate constants of the associated reactions. A
mathematical model of a BIAcoreTM, a common SPR device, consists of a convection�
diffusion equation in a channel with a reacting surface at the channel ceiling. Asymptotic
and singular perturbation techniques are used to analyse the concentration of the reacting
species in two cases: when the reaction occurs much more slowly than diffusion, and when
the reaction occurs on the same time-scale as diffusion. Linear and nonlinear integral
equations result from the analysis; explicit and asymptotic solutions are constructed for
physically realizable cases. These expressions provide a direct way to estimate the rate
constants from raw data.

1. Introduction

The study of chemical reactions is of great importance to the biological and chemical
sciences. Fundamental to the understanding of such reactions are quantitative measure-
ments of the governing rate constants in a reaction. Of particular interest in biological
applications are bimolecular reactions where one of the reactants is con"ned to a surface,
while the other is immersed in a volume of which the surface is one of the boundaries
(Goldstein & Dembo 1995). Thus, the "eld of biomolecular interaction analysis (BIA) has
become quite active.

Surface plasmon resonance (SPR) allows the measurement of rate constants in such
surface�volume reactions, and the BIAcoreTM is a popular device for performing SPR.
The BIAcoreTM device consists of a channel through which one of the reactants #ows
(see Fig. 1). The other reactant, called the receptor, is coupled to a sensor surface on the
ceiling of the channel. A polarized light beam re#ects off the channel ceiling and passes
to a detector. Refractive changes due to the binding of the reactants are then averaged over
the length of the ceiling to provide real-time measurement of the bound-state concentration
(Karlsson et al. 1991; Szabo et al. 1995).

The area of surface�volume reactions has great applicability. Receptors con"ned to
the surface of a cell react with ligands #oating in the cytoplasm (Goldstein & Dembo
1995). Antigen�antibody interactions occur in such geometries, and gene expression is
signi"cantly in#uenced by DNA�protein interactions. Also, puri"cation processes often
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FIG. 1. Schematic of the BIAcoreTM device

occur in channels with reactants embedded along a wall, and thus the BIAcoreTM is
a natural device for analysing the steps in such processes. In all of these cases, the
SPR technique has been quite successful in computing rate constants for the associated
reactions (Szabo et al. 1995; Yarmush et al. 1996). Further discussions of the biochemical
applications of surface�volume reactions can be found in (Edwards et al. forthcoming).

To calculate the rate constants from the raw data, one must model the convection�
diffusion system with associated reaction. Though there has been some modeling of all the
dynamics in similar systems (Goldstein & Dembo 1995; Lok et al. 1983), most authors
decouple the reaction kinetics from the transport dynamics. When one decouples the
two effects, the equations that result are easily solved in terms of exponentials (Corr et
al. 1994). Unfortunately, this decoupling occurs only when parameter values are in certain
ranges (Karlsson et al. 1994). Though there have been numerical simulations that include
transport effects (Glaser 1993), few analytical studies have been undertaken.

In this paper, we model the full convection�diffusion system with the reaction at the
boundary. Through scaling arguments, we show that there are four distinct time-scales: one
each for convection, diffusion near the wall, diffusion into the binding surface, and reaction
on the binding surface. The #ow away from the walls equilibrates on the convective time-
scale, and then the #ow near the walls equilibrates on the time-scale of diffusion near the
wall. Lastly, the bound concentration evolves on the longer of the remaining two time-
scales.

We solve the resulting equations via a perturbation analysis. By using knowledge
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about the convective #ow, we can reduce the full set of equations to an integrodifferential
equation at the boundary. In the case of small Damköhler number (Da) where the kinetics
and transport effects decouple, we construct the correction to a previously derived one-
term expansion for small Da, thus increasing its range of validity. The form of the regular
expansions suggests a multiple-scale expansion, which is also constructed.

Due to the nature of the BIAcoreTM device, it is often dif"cult to set up the experiment
such that Da = o(1). Therefore, we also analyse the system when Da = O(1) and diffusion
and reaction effects balance. A nonlinear integral equation results, but the rate constants
can easily be estimated from a short-time solution for the bound-state concentration. In
the specialized but physically important case where the bound state is initially a constant,
explicit solutions are constructed in terms of known quantities. These solutions provide
a direct way to estimate the rate constants not only when Da = o(1), but also in the
previously ignored case when Da = O(1).

2. Governing equations

The BIAcoreTM experimental device can best be modelled as a two-dimensional channel,
closed at top and bottom, with height h (see Fig. 1). Unbound ligands #ow down the
channel in solution, and receptors are attached to a portion of the channel ceiling of
length L . The receptors and ligands bind together, and measurements of that bound ligand
concentration are taken by computing a quantity averaged over space:

B̄(tc) = 1

xmax − xmin

∫ xmax

xmin
B(x, tc) dx, (2.1)

where B is the concentration of the bound state, tc is time, and x is distance along the
channel measured from the beginning of the reacting portion. The dimensionless variables
B and x are normalized by the total number of receptor sites RT and by L , respectively.
Thus, B represents the proportion of reacting sites actually bound and x ∈ [0, 1]. Here xmin
is a "nite distance away from 0 and xmax is a "nite distance away from 1. We choose the
time-scale L/V , where V is a characteristic convective velocity, because it is the fastest
scale. (For further discussions of the sizes of all the relevant parameters, see the Appendix.)

Since the Reynolds number is quite small for this system, we expect laminar convective
#ow. Any perturbations in this #ow near x = 0 introduced by narrowing of the channel,
etc., decay on an O(ε) scale, where ε = h/L is the aspect ratio (Brody et al. 1996). Since
0 < ε ¿ 1 and our measurements begin a "nite distance away from zero, we may use the
standard two-dimensional Poiseuille #ow with (adjustable) maximal velocity.

The unbound ligands will also diffuse with molecular diffusion coef"cient D̃. Thus,
the mathematical model is the following two-dimensional convection�diffusion equation,
expressed in dimensionless form:

∂C

∂tc
= Pe−1

(
ε2
∂2C

∂x2
+ ∂

2C

∂y2

)
− y(1− y)

∂C

∂x
, 0 6 x 6 1, 0 6 y 6 1, (2.2)

where C is the concentration of the ligand, y measures distance below the channel ceiling,
and Pe = Vh2/D̃L is the Peclét number. The velocities achieved in the BIAcoreTM are
large compared to the diffusion rate, and hence we take PeÀ 1.
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We have scaled the variable y by h and the concentration has been scaled by an
adjustable prescribed in#ow concentration CT. This scaling then implies that

C(0, y, tc) = 1. (2.3)

The initial concentration in the channel is known:

C(x, y, 0) = Ci(x, y). (2.4)

At the downstream end of the channel (x = 1), there is no change in the #ow concentration:
∂C

∂x
(1, y, tc) = 0, (2.5)

and there is no #ux through the channel #oor (y = 1):
∂C

∂y
(x, 1, tc) = 0. (2.6)

Since there are no other sources or sinks, the #ux normal to the binding surface (y = 0)
must be equal to the rate of change of the bound receptor concentration:

∂B

∂tc
= D

∂C

∂y
(x, 0, tc), D = D̃CTL

RTVh
. (2.7a)

We note that D may be rewritten as

D = D̃CT/RTh

V/L
= diffusion rate from channel to reacting surface

convective transport rate in channel
= CTh/RT

Pe
, (2.7b)

and that the numerator and denominator in the last expression in (2.7b) can be varied
independently of one another in an experimental survey. We note from the Appendix that
for physically realizable systems, D ¿ 1.

The introduction of the new unknown B requires the imposition of another boundary
condition, which is given by the evolution of the bimolecular reaction:

∂B

∂tc
= kon [(1− B)C(x, 0, tc)− K B] , kon = k̃onCTL

V
, K = K̃

CT
, K̃ = k̃off

k̃on
.

(2.8)
Here k̃on is the association rate constant, which measures the speed of the reaction in the
presence of both reacting species, k̃off is the dissociation rate constant, which measures the
rate of dissociation of the bound state in the absence of the other reactant, the ratio K̃ is the
dimensional equilibrium dissociation constant, while K is the dimensionless version. Note
that kon is the `natural' dimensionless reaction rate (de"ned so that the forward reaction
takes place on the time-scale tc = k−1on ). Lastly, we need an initial condition for B:

B(x, 0) = Bi(x). (2.9)
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3. Preliminaries

3.1 The steady state

However complicated the evolution of equations (2.2) to (2.9) may be, important results
needed to estimate the rate constants may be obtained simply by solving those equations
for their steady states, which we denote by the subscript s. It should be clear from the forms
of the boundary data (2.3) and (2.5) to (2.7a) that the steady-state solution for the unbound
ligands is Cs(x, y) = 1. Substituting this expression into the steady-state form of (2.8) and
solving, we obtain

Bs(x)= 1

K + 1 =
1

α
, α = 1+ K , (3.1a)

= CT

K̃ + CT
. (3.1b)

Note that the steady-state solutions do not depend on the size of Pe and ε and also do not
depend on the initial data.

From (3.1a) we note that for any experiment, a measurement of the long-time
asymptote of B(x, t) will yield a value for K . However, due to normal experimental error,
the calculated value for K will be only approximate. By running many experiments to
obtain numerous data points, one can perform a linear or nonlinear regression analysis to
yield a best estimate for K . For instance, by varying values of CT and "tting a curve of Bs
vs. CT, one can obtain a better estimate for K̃ . If we take the ratio of the steady-state bound
concentration Bs to the injected concentration of unbound ligands, we have

Bs
CT
= 1

K̃
− Bs

K̃
. (3.2)

Therefore, creating a Scatchard plot of Bs/CT vs. Bs for various CT will yield a straight
line with K̃ as the negative reciprocal of the slope (Motulsky 1996).

Unfortunately, considering the steady state gives us only one data point for K̃ per run.
In order to get an appropriate estimate for both k̃on and k̃off, we must have another piece
of information, which we shall derive in later sections. In addition, we expect that the
rate constants will affect the evolution of B. Therefore, the development of an accurate
evolution equation for B will allow us to use real-time measurements as data points for our
parameter estimation.

3.2 The outer solution

Since the Peclét number is large, we think of Pe−1 as a perturbation parameter in the
following series:

C(x, y, tc;Pe) = Cc(x, y, tc)+ o(1), B(x, tc;Pe) = Bc(x, tc)+ o(1). (3.3)

Substituting (3.3) into (2.7a) and using the fact that D is small, we obtain

∂Bc
∂tc
= 0 (3.4a)
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to leading order. Since the evolution of the bound state is governed by a slower diffusive
process, only the unbound ligand concentration will evolve on the tc time-scale and we
have

Bc(x, tc) = Bi(x). (3.4b)

If the right-hand side of (2.8) is non-zero, then a boundary layer must be inserted near the
reacting surface to enforce consistency with (3.4a), as discussed in Subsection 3.3.

Substituting (3.3) into (2.2) to (2.4) and expanding to leading order, we have the
following:

∂Cc
∂tc
= −y(1− y)

∂Cc
∂x

, Cc(0, y, tc) = 1, Cc(x, y, 0) = Ci(x, y), (3.5)

the solution of which is

Cc(x, y, tc) =
{
Ci (x − y(1− y)tc, y) , if x − y(1− y)tc > 0,

1, otherwise.
(3.6)

Since the operator in (3.5) is of lower order than (2.2), its solution (3.6) may not satisfy all
the boundary conditions on the full problem. This will necessitate the formation of several
boundary and internal layers.

3.3 Diffusive layers

We note from (3.4a) that the dynamics of interest, the evolution of the bound state, do not
occur on the tc time-scale. Therefore, any diffusive boundary layers will only be necessary
to smooth the discontinuities in the outer solution. Hence we only enumerate them, rather
than discuss them in detail.

From (2.6), we see that there will be a layer in the derivative near y = 1 if ∂Ci/∂y(x, 1)
6= 0. In addition, there may be a layer near y = 0 where the unbound ligand concentration
adjusts to (2.8) with B = Bi. There may also be a layer about the convective wave front if

Ci(0, y) 6= 1. All of the diffusive layers on this time-scale are O(Pe− 12 ) wide.
Lastly, there is a layer at x = 1 caused by the boundary condition (2.5), also of width

O(Pe−
1
2 ). However, since measurements of the bound ligand concentration stop at xmax,

which is an O(1) distance from x = 1, we never worry about satisfying equation (2.5). In
particular, when convenient we take x to be semi-in"nite.

4. Boundary layer with reaction

4.1 Governing equations

Since the evolution of B must take place on a long time-scale, we compress tc by letting

tD = Pe− 13 tc, where the D indicates the diffusive time-scale. As tc→∞, (3.6) approaches
1 everywhere except on the boundaries. Thus, there is a discontinuity at y = 0.

To resolve this layer, we stretch y by letting

η = Pe 13 y, C(x, y, tc) = CD(x, η, tD), B(x, tc) = BD(x, tD).
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This Pe
1
3 scaling is common to convection�diffusion�reaction systems of this type (Glaser

1993; Lok et al. 1983). Since the characteristic time for diffusion is much greater than that
for convection, the effect of the wall has more time to propagate, and hence the boundary
layer is wider than those mentioned in Section 3.3.

Substituting these new variables into (2.2), (2.3), (2.7a), (2.8) and (2.9), we have the
following, to leading order:

∂CD

∂tD
= ∂2CD

∂η2
− η∂CD

∂x
, (4.1)

CD(0, η, tD) = 1, (4.2)

∂BD
∂tD
= DD

∂CD

∂η
(x, 0, tD), DD = DPe

2
3 = CTh/RT

Pe
1
3

, (4.3a)

∂BD
∂tD
= konPe 13 [(1− BD)CD(x, 0, tD)− K BD] , (4.3b)

BD(x, 0) = Bi(x). (4.4)

We note that equation (4.1) has all the salient features of (2.2) with the exception of

diffusion in the x-direction, which is O(ε2Pe
1
3 ) = o(1) smaller than the terms in (4.1).

The term DD measures the ratio of the diffusion rate into the surface to the diffusion rate
in the boundary layer. Equating the right-hand sides of (4.3), we obtain

∂CD

∂η
(x, 0, tD) = Da [(1− BD)CD(x, 0, tD)− K BD] , Da = konPe

1
3

DD
, (4.5)

where Da is the Damköhler number, which measures the ratio of the reaction rate to the
diffusion rate in the boundary layer.

In physical terms, our function CD , which blends the effects of diffusion and
convection, must match to the convective solution Cc as we exit the layer. Thus, while
the #ow away from the walls equilibrates on the tc time-scale, the #ow near the walls
equilibrates on the tD time-scale.

As noted in the Appendix, DD can be either smaller than O(1). In addition, Da can be
larger than, smaller than, or O(1). Therefore, we must break our work up into many cases.

4.2 Case 1, Da¿ 1

In this case, the reaction is too slow to use up any diffusive #ux, and (4.5) becomes

∂CD

∂η
(x, 0, tD) = 0. (4.6)

Substituting (4.6) into (4.3a), we obtain

∂BD
∂tD
= 0 H⇒ BD(x, tD) = Bi(x), (4.7)
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where we have used (4.4). Since this time-scale is faster than the one on which the bound
concentration changes, this boundary layer captures only the slow diffusion near the wall.
The system governing the evolution of the unbound ligand concentration is given by (4.1),
(4.2) and (4.6).

Since the evolution of the bound state occurs on a slower time-scale than tD , we
introduce the following new variables:

t = konPe
1
3 tD = kontc = k̃onCT t̃, (4.8a)

CD(x, η, tD) = Ck(x, η, t)+ o(1), BD(x, tD) = Bk(x, t)+ o(1), (4.8b)

where t̃ is the dimensional time-scale. In (4.8a), konPe
1
3 is small because DD is never larger

than O(1) and their ratio konPe
1
3 /DD = Da¿ 1. Substituting (4.8) into (4.3b), we obtain

∂Bk
∂t
= (1− Bk)Ck(x, 0, t)− K Bk, (4.9)

and thus t is the time-scale on which the reaction occurs.
Substituting (4.8) into (4.1), (4.2) and (4.4), we have the following, to leading order:

η
∂Ck
∂x
= ∂2Ck

∂η2
, (4.10)

Ck(0, η, t) = 1, (4.11)

Bk(x, 0) = Bi(x). (4.12)

The appropriate similarity variable for (4.10) is η/x
1
3 , and hence the effects of diffusion

will become more pronounced with increasing x (Karlsson et al. 1994). Substituting (4.8)
into (4.3a) to obtain the other boundary condition at the reacting surface, we obtain

∂Ck
∂η

(x, 0, t) = Da∂Bk
∂t
, (4.13a)

which becomes
∂Ck
∂η

(x, 0, t) = 0 (4.13b)

in the limit of small Da. In order to match Ck to the uniform outer solution, we require that

Ck(x,∞, t) = 1. (4.14)

We note that Bk will depend on K and t , which itself depends on kon. Therefore, by
taking measurements of B̄k and comparing the results with our solutions, we should be
able to obtain good estimates for K and kon. Since CT is known for each experiment, one
can easily estimate k̃on and k̃off, which is the end goal of this process.

At least to leading order, the solutions of the equations for this case are well known
(Corr et al. 1994). They are easy to solve (as we shall show in Subsection 5.1) because
the transport effects are divorced from the reaction kinetics. Therefore, it is the goal of
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biochemists to set up their experimental apparatus such that these two dynamical processes
occur on disparate scales. It is clear from this analysis that in order to do so, they must set

Da¿ 1 H⇒ V À k̃3onR
3
ThL

D̃2
, (4.15)

as in Karlsson et al. (1994). Of course, one must estimate the magnitude of k̃on in order to
estimate the threshold value of V . In practice, experimentalists simply increase V until the
data from the apparatus matches the leading-order theoretical predictions.

Unfortunately, in order to get measurable readings from the detector, a large number of
receptor sites is needed. Since the bound for V depends on the cube of RT, RT is often so
large that the velocity cannot be increased enough to make Da = o(1).

4.3 Case 2: DaÀ 1

In this case, the reaction is so fast that the unbound ligand concentration must adjust to the
proper concentration at the surface, and (4.5) becomes, to leading order,

CD(x, 0, tD) = K BD
1− BD

. (4.16)

Unfortunately, in this case the leading-order solutions depend only on K , not the
individual rate constants. Thus, we cannot obtain the rate constants separately with
leading-order solutions alone. Happily, this case does not occur often in practice, as
experimentalists can often increase the velocity enough to make Da = O(1).

Case 2a: Da À 1, DD ¿ 1. In this case, the evolution of the bound concentration at the
surface must take place on a slower time-scale. A dominant balance is obtained when we
let

tw = DDtD = DDPe
− 13 tc, CD(x, η, tD) = Cw(x, η, tw), BD(x, tD) = Bw(x, tw),

(4.17)
where the subscript w indicates that wall dynamics are important in this region.
Substituting (4.17) into (4.1), (4.2), (4.4) and (4.3b), we obtain (4.10) to (4.12) and (4.16)
with the subscripts k and D replaced by w. The matching condition (4.14) also holds
with the switched subscripts. Substituting (4.17) into (4.3a), we have the "nal boundary
condition:

∂Bw
∂tw
= ∂Cw

∂η
(x, 0, tw). (4.18)

Case 2b: DaÀ 1, DD = O(1). In this case, we see that the following are true.

(1) We must use the full form of (4.3a) as a boundary condition for the evolution on the
tD time-scale.

(2) Since DD = O(1), tD and tw are of the same order. Thus, the solution of both bound
and unbound ligand concentration evolves on the tD time-scale as governed by (4.1)
to (4.3a), (4.4) and (4.16).
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4.4 Case 3: Da = O(1)

In this case, the reaction rate balances with the diffusion process, and thus (4.5) cannot be
reduced. However, tw and t are now of the same order, so we may write our leading-order
solutions in terms of t and K which, as indicated before, will allow us to calculate both rate
constants. Once again, there are two subcases to consider, depending on the size of DD .

Case 3a: Da = O(1), DD ¿ 1. On the tD time-scale, (4.3a) reduces to the form in (4.7)
since DD ¿ 1. Upon substituting BD = Bi into (4.5), we obtain

∂CD

∂η
(x, 0, tD) = Da [(1− Bi)CD(x, 0, tD)− K Bi] . (4.19)

Thus, evolution on the tD time-scale is governed by (4.1), (4.2) and (4.19). On the t
time-scale, we may proceed as in case 1, with (4.13b) replaced by (4.13a) for the proper
boundary condition since Da = O(1). Therefore, evolution on the t scale is governed by
(4.9) to (4.13a) and (4.14).

Case 3b: Da = O(1), DD = O(1). Both of our parameters are O(1) in this case, so tD ,
tw, and t are all of the same order. Thus, we must work with the full system on the tD
time-scale, which is given by (4.1) to (4.5).

4.5 Summary

Since Pe À 1, the #ow away from the walls equilibrates on the convective time-scale
(subscripts c), and then the #ow near the walls equilibrates on the diffusive time-scale

(subscripts D), which is Pe
1
3 longer. The remaining two time-scales are the reaction time-

scale (subscripts k), which is k−1on longer than the convective time-scale, and the time-scale
for diffusion into the ceiling (subscripts w), which is Pe

1
3 /DD longer than the convection

time-scale. The bound concentration evolves on the longer of these latter two. If Da =
O(1), then these two time-scales are of the same order. If DD = O(1), then diffusion in
the boundary layer and diffusion into the ceiling occur on the same time-scale.

5. Asymptotic solution of case 1, Da¿ 1, DD ¿ 1

As previously mentioned, experimentalists attempt to operate in the regime of small Da
(case 1), since the leading-order behaviour of the bound concentration is easy to deduce
(Corr et al. 1994). We shall calculate the "rst two terms of the expansion for the bound
concentration in the limit of small Da. This additional term should allow us to increase the
range of Da for which our expansion is a good approximation.

As noted in the Appendix, though DD can be O(1), in almost all physically realizable
cases, DD ¿ 1. Therefore, we reduce to that subcase in this section. Such a choice affects
only the correction to the leading-order solution, as indicated below. Since the receptors
can initially be laid down at a variable concentration, we consider the case of general Bi(x).
However, the most common case is Bi constant, which we address in Subsections 5.3 and
6.2.
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5.1 Regular expansion

In order to calculate the next term in a perturbation expansion, we must determine the
proper perturbation parameter. It is not appropriate to use Pe−1, since convective effects
are subdominant in this regime. The two possible choices are konPe

1
3 , which arises from the

time-derivative term in the full form of equation (4.1), and Da, which arises from (4.13a).

Since the ratio konPe
1
3 /Da = DD ¿ 1, Da is the larger parameter and so we use Da for

the perturbation parameter. Hence our expansions become

Ck(x, η, t) = C0(x, η, t)+ DaC1(x, η, t)+ o(Da), (5.1a)

Bk(x, t) = B0(x, t)+ DaB1(x, t)+ o(Da). (5.1b)

Substituting (5.1) into (4.9) to (4.13a) and (4.14), the leading order is given by (4.9)
to (4.12), (4.13b) and (4.14) with the subscript k replaced by the subscript 0. At the next
order, we have

η
∂C1
∂x
= ∂2C1

∂η2
, (5.2a)

C1(0, η, t) = 0, C1(x,∞, t) = 0, (5.2b)

∂C1
∂η

(x, 0, t) = ∂B0
∂t
, (5.3)

∂B1
∂t
= (1− B0)C1(x, 0, t)− B1C0(x, 0, t)− K B1, (5.4)

B1(x, 0) = 0. (5.5)

If we had chosen DD = O(1), equation (5.2a) would also have included a term of the form
∂C0/∂t .

Upon inspection, the solution of the leading-order equations is found to be

C0(x, η, t) = 1. (5.6)

Substituting (5.6) into the new form of (4.9), we obtain the evolution equation

∂B0
∂t
= 1− αB0. (5.7)

Before solving (5.7), we note that if we take its mean (in the sense of (2.1)) and then write
most of the quantities in dimensional form, we have the following:

dB̄0
dt̃
= k̃onCT − S B̄0, S = k̃onCT + k̃off, (5.8)

where we have used the de"nitions in (2.8) and (4.8a). Therefore, a plot of dB̄0/dt̃ vs. B̄0
will yield a straight line with slope S. Since CT is a known quantity which can be varied in
different experiments, a plot of S vs. CT will be a straight line with slope k̃on and intercept
k̃off. It is in this way that rate constants are often calculated with the BIAcoreTM device
(Glaser 1993; Karlsson et al. 1991). Note also that due to the special form of (5.8), we do
not use the steady-state solution (3.1a) to provide information about K .
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Solving (5.7) subject to the new form of (4.12), we obtain

B0(x, t)= 1− e
−αt

α
+ Bi(x)e

−αt , (5.9a)

B̄0(t)= 1− e
−αt

α
+ B̄ie

−αt . (5.9b)

Unfortunately, due to the large size of RT in a typical experiment, Da often becomes large
enough that a leading-order expansion is not good enough to provide meaningful estimates.
Therefore, we continue by constructing the next order in the perturbation expansion.

Substituting (5.6) into (5.4) and solving for C1(x, 0, t), we have the following:

C1(x, 0, t) = 1

1− B0

(
∂B1
∂t
+ B1 + K B1

)
. (5.10)

To obtain a solution, we introduce a Laplace transform in x into (5.2a) and (5.10) subject
to (5.2b). The solution of the transformed equations is an Airy function whose derivative
at η = 0 can be readily computed. We then substitute this result into the Laplace transform
of (5.3). The resulting expression may be manipulated and inverted to yield

1

1− B0

(
∂B1
∂t
+ B1 + K B1

)
= − 1

3
1
3Γ ( 23 )

∫ x

0

∂B0
∂t
(x − ξ, t) dξ

ξ
2
3

. (5.11)

Substituting our form for B0 from (5.9a) into (5.11) and solving the resulting equation
subject to (5.5), we obtain

B1(x, t) = e−αt

3
1
3Γ ( 23 )

{
e−αt − 1

α

[
1

α
− Bi(x)

]
− t K

α

}[
3x

1
3 − α

∫ x

0

Bi(x − ξ)
ξ
2
3

dξ

]
.

(5.12)
Unfortunately, when we expand (5.12) for large t , a secular term of the form te−αt

appears. Though DaB1 ¿ B0 for all t since B0 approaches an O(1) steady state, this term
is troublesome, since upon subtracting the steady state, we obtain DaB1 = O(B0 − Bs)
for t = O(Da−1). Therefore, a multiple-scale expansion is desirable, and hence we should
use (5.12) as an aid in determining the rate constants only when t = o(Da−1).

The multiple-scale expansion we construct in Subsection 5.2, though mathematically
sound, will not provide illuminating physical results. Thus, we construct the next-order
correction to our barred quantity, keeping in mind that we should use this expression only
for t = o(Da−1):

B̄1(t) = I[B1; xmax]− I[B1; xmin]
xmax − xmin , I[ f ; x] =

∫ x

0
f (ξ) dξ, (5.13)

where

I[B1; x]= 3
2
3 e−αt

Γ ( 23 )

(
e−αt − 1
α2

− t K

α

)[
3x4/3

4
− α

∫ x

0
Bi(x − ξ)ξ 13 dξ

]

+e
−αt (1− e−αt)
3
1
3αΓ ( 23 )

∫ x

0
Bi(ξ)

[
3ξ

1
3 − α

∫ ξ

0

Bi(ξ − u)
u
2
3

du

]
dξ. (5.14)
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5.2 Multiple-scale expansion

Since the secularity in our expression occurs at the "rst order, we introduce the new
variables

τ = Dat, T =
(
1+

∞∑
n=2

ωnDa
n

)
t, (5.15)

and write our dependent variables in the following way:

Ck(x, η, t) = c0(x, η, τ, T )+ Dac1(x, η, τ, T )+ o(Da), (5.16a)

Bk(x, t) = b0(x, τ, T )+ Dab1(x, τ, T )+ o(Da). (5.16b)

In order to construct the proper equations, we substitute the new variables from (5.15)
and (5.16) into (4.9) to (4.13a) and (4.14). At leading order, the governing equations are
given by (4.9) to (4.12), (4.13b) and (4.14) with Ck replaced by c0, Bk replaced by b0,
and t replaced by T . Therefore, the leading-order solution for the concentration "eld is
c0(x, η, τ, T ) = 1, as before. Hence we obtain (5.7) with B0 replaced by b0 and t replaced
by T , the solution of which is given by

b0(x, τ, T ) = 1

α
+ a(x, τ )e−αT , a(x, 0) = Bi(x)− 1

α
, (5.17)

where we have used the new form of (4.12).
The next order of equations (4.10) to (4.13a) and (4.14) is given by (5.2), (5.3), and

(5.5) with C1 replaced by c1, B1 replaced by b1, and t replaced by T . Upon substitution of
(5.17), we see that the next order of (4.9) is given by

c1(x, 0, τ, T ) = 1

1− b0

(
∂b1
∂T
+ ∂b0
∂τ
+ b1 + Kb1

)
, (5.18)

which is analogous to (5.10) except for the extra ∂b0/∂τ term arising from the multiple-
scale expansion. Thus, to construct the solution for a, we need only the analogue of (5.11),
which is

1

1− b0

(
∂b1
∂T
+ ∂b0
∂τ
+ b1 + Kb1

)
= − 1

3
1
3Γ ( 23 )

∫ x

0

∂b0
∂T

(x − ξ, τ, T ) dξ
ξ
2
3

. (5.19)

Substituting our expression for b0 into (5.19), we have

∂b1
∂T
+ αb1 = e−αT

[
−∂a
∂τ
+ K

3
1
3Γ ( 23 )

∫ x

0

a(x − ξ, τ )
ξ
2
3

dξ

]
+...,

where the unlisted terms do not contribute to the secularity. To suppress it, we once again
introduce a Laplace transform in x . The resulting solution for the transform of a is an
exponential which cannot be inverted in closed form. However, we may use the Taylor
series for the exponential and invert term-by-term to yield

a(x, τ ) = Bi(x)− 1

α

∞∑
n=0

(rτ x
1
3 )n

Γ (1+ n/3)n! +
∞∑
n=1

(rτ)n

Γ (n/3)n!

∫ x

0
ξ−1+n/3Bi(x − ξ) dξ,

(5.20a)
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r = Γ ( 13 )K

3
1
3Γ ( 23 )

. (5.20b)

Though (5.20a) grows exponentially in τ , the e−αt contribution from (5.17) will swamp
the O(eDat ) contribution from (5.20a) as t → ∞, and hence the expression for b0 will
converge.

In order to obtain estimates for the rate constants, we need the expression for the mean,
which is easily found using (5.17):

b̄0(τ, T ) = 1

α
+ I[a; xmax]− I[a; xmin]

xmax − xmin e−αT , (5.21)

where

I[a; x] = − x
α

∞∑
n=0

(rτ x
1
3 )n

Γ (2+ n/3)n! +
∞∑
n=0

(rτ)n

Γ (1+ n/3)n!
∫ x

0
ξn/3Bi(x − ξ) dξ. (5.22)

Due to the complicated nature of (5.22), it is best to revert to the expressions given
in Subsection 5.1 when actually calculating parameter values. We run the experiment to
a steady state, and use (3.1a) to give us an estimate for K . Then we "t the data for t =
o(Da−1) with the "rst two terms of the expansion given by (5.9b) and (5.13). From the
dependence on t , we can calculate k̃on. Then using the values for K and CT, we may
calculate k̃off.

5.3 Constant initial state

Obviously the integral in (5.12) is not amenable to easy calculation for arbitrary Bi(x).
Fortunately, in real experiments it is easy (and often convenient) to set up the apparatus
such that Bi(x) is a constant value Bi.

In this case, equations (5.9) become

B0(x, t) = 1− χe−αt
α

= B̄0(t), χ = 1− αBi. (5.23)

In addition, (5.12) becomes the following:

B1(x, t) = 3
2
3 x

1
3χe−αt

αΓ ( 23 )

[
χ(e−αt − 1)

α
− Kt

]
. (5.24)

Equation (5.14) becomes

I[B1; x] = 3
5
3 x

4
3χe−αt

4Γ ( 23 )α

[
χ(e−αt − 1)

α
− Kt

]
. (5.25)

Substituting (5.25) into (5.13), we obtain

B̄1(t) =
3
5
3 (x

4
3
max − x

4
3
min)χe

−αt

4Γ ( 23 )α(xmin − xmax)

[
χ(e−αt − 1)

α
− Kt

]
. (5.26)
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TABLE 1
Parameter values for Figs 2 and 3

Necessary parameters
Given Calculated

Parameter Value Parameter Value

Bi 0 r 1·37
CT (mol/cm3) 10−11 T 10−3 t̃/s

Da 10−1 t 10−3 t̃/s
K 1 α 2

k̃on (cm3mol−1s−1) 108 τ 10−4 t̃/s
xmax 7·92× 10−1 χ 1
xmin 2·08× 10−1

Ancillary parameters
Given Calculated

Parameter Value Parameter Value

D̃ (cm2/s) 2·8× 10−7 D 3·34× 10−4
h (cm) 5× 10−3 DD 1·73× 10−2
Pe 3·71× 102 k̃off (s−1) 10−3
ε 2·08× 10−2 RT (mol/cm2) 4·03× 10−13

Thus, we now have all the component parts necessary to obtain rate constant estimates
from the two-term regular perturbation expansion.

The multiple-scale expansion also simpli"es greatly. With our choice of Bi(x), (5.22)
becomes

I[a; x] = −χx
α

∞∑
n=0

(rτ x
1
3 )n

Γ (2+ n/3)n! . (5.27)

In order to plot graphs of our solutions, we select parameters motivated by the
Appendix. These parameters appear in Table 1. The "rst half of the table lists the
parameters necessary to construct Figs 2 and 3. The physical parameters taken from the
Appendix are listed on the left; any parameters calculated from those values are listed on
the right. The second half of the table lists other parameters associated with the problem.
We note that DD ¿ 1, as expected.

Figure 2 shows a graph of B̄0 (as given by (5.23)) versus the dimensional time t̃ (in
seconds), since this is how the constants would be determined in a given experiment. Also
indicated on the graph of Fig. 2 is the long-time asymptote α−1 = 1

2 given by (3.1a). Figure
3 illustrates the differences between the regular and multiple-scale expansions. The solid
line is a graph of DaB̄1 as given by (5.26). The dashed line is a graph of B̄0 − b̄0, which
we calculate by using the "rst six terms of (5.27) in (5.21).
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FIG. 2. B̄0(t̃) vs. t̃ for the parameters in Table 1, along with the asymptote α
−1 = 1

2

FIG. 3. Correction to B̄0(t̃) from B̄1(t̃) (solid line) and b̄0(t̃) (dashed line) vs. t̃ for the parameters in Table 1
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6. Case 3a

6.1 General asymptotic solution

As indicated before, the other case of real physical signi"cance is the one in which Da =
O(1) and DD ¿ 1 (case 3a). We wish to obtain an expression for the concentration of
the bound ligand state, so we focus on the evolution on the t time-scale. We note that if
we rewrite equations (4.9) to (4.11), (4.13a) and (4.14) using C1 = 1− Ck , we obtain the
following correspondences:

(4.10) ⇔ (5.2a); (4.11), (4.14) ⇔ (5.2b); (4.13a) ⇔ (5.3); (4.9) ⇔ (5.10).

These are not exact correspondences, but the forms of the operators and boundary
conditions are the same. Therefore, the solution process is analogous to the one for C1
in Subsection 5.1. In this case, (5.11) is replaced by

1− 1

1− Bk

(
∂Bk
∂t
+ K Bk

)
= Da

3
1
3Γ ( 23 )

∫ x

0

∂Bk
∂t
(x − ξ, t) dξ

ξ
2
3

, (6.1)

which is a variant of an Abel equation. In the limit that Da → 0, (6.1) reduces to the
evolution equation (5.7) for B0, as expected. Of course, (5.7) is exactly the evolution
equation for the solution Ck = 1, which is what one would expect the unbound ligand
concentration to be in the limit of small Da.

In contrast to (5.11), equation (6.1) is nonlinear and is thus very dif"cult to solve in
closed form. However, in order to obtain estimates for the rate constants, we do not need
the full solution for Bk . Let us assume a solution of the form

Bk(x, t) = Bi(x)+ β1(x)t + o(t), t → 0. (6.2)

Once we have calculated β1 and taken its average, we will obtain an expression that can
be compared to the short-time behaviour of the experimental data. Since the result will
depend on both K and t , we can then back out the corresponding rate constants.

Substituting the "rst two orders of (6.2) into (6.1), we have

1− Bi(x)− [β1 + K Bi(x)] = Da[1− Bi(x)]

3
1
3Γ ( 23 )

∫ x

0

β1(x − ξ)
ξ
2
3

dξ, (6.3)

which is again an unwieldy equation. However, this one is more easily solvable since it is
linear.

6.2 Constant initial state

Following the motivation in Subsection 5.3, we now consider Bi to be a constant. In this
case, equation (6.3) becomes

1− αBi − β1 = Da(1− Bi)

3
1
3Γ ( 23 )

∫ x

0

β1(x − ξ)
ξ
2
3

dξ. (6.4)
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We could solve for β1 directly, but we really wish to calculate B̄k(t), which for small t is
given by

B̄k(t) = Bi + t{I[β1; xmax]− I[β1; xmin]}
xmax − xmin + o(t), (6.5)

where we have used our hypothesis for Bi(x). Hence, it is more convenient to solve for
I[β1; x]. Using Laplace transforms in x , the solution is found to be

I[β1; x] = χe−µx

µ

[
eµx − 1− |P( 43 ,−µx)| + |P( 53 ,−µx)|

]
,

µ = 1

3

[
Da(1− Bi)Γ (

1
3 )

Γ ( 23 )

]3
, (6.6)

where P is the normalized incomplete gamma function de"ned by

P(n/3,−µx) = γ (n/3,−µx)
Γ (n/3)

= 1

Γ (n/3)

∫ −µx
0

e−ξ ξn/3−1 dξ.

Equation (6.5) is most useful when expressed in dimensional terms:

B̄k(t̃) ∼ Bi + k̃onCT t̃{I[β1; xmax]− I[β1; xmin]}
xmax − xmin , t̃ → 0, (6.7)

where we have used (4.8a). In order to calculate the rate constants, we perform the
experiment with Bi constant. We use (3.1a) to obtain an estimate for K from the steady
state. In order to calculate both rate constants, we construct a linear "t to our small-time
experimental data. Once we have calculated the slope S of that line, we solve the following
equation:

S = k̃onCT{I[β1; xmax]− I[β1; xmin]}
xmax − xmin (6.8)

to obtain k̃on. It is important to note that the relationship between S and k̃on is not linear,
since β1 also depends on k̃on through the parameter Da. Then using our value for K , we
may calculate k̃off.

In order to determine how S varies with k̃on, we select parameters motivated by the
Appendix. These parameters appear in Table 2, the layout of which is the same as Table 1.
Here the dimensionless rate constant is given by

k = 10−9k̃onmol · s
cm3

. (6.9)

Substituting our parameters in Table 2 and (6.9) into (6.8), we obtain

S = 7·2× 10−2k{I[β1; 0·8]− I[β1; 0·2]} s−1. (6.10)

We note from the Appendix that k can vary from 10−3 to 103, so Fig. 4 shows a graph of
S (as given by (6.10)) vs. log10 k.
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TABLE 2
Parameter values for Fig. 4 and (6.13).

Necessary parameters
Given Calculated

Parameter Value Parameter Value

Bi 0 µ 39.5k3

CT (mol/cm3) 10−11 χ 1
D̃ (cm2/s) 2·8× 10−7
h (cm) 5× 10−3
L (cm) 2·4× 10−1

RT (mol/cm2) 10−12
V (cm/s) 1
xmax 7·92× 10−1
xmin 2·08× 10−1

Ancillary parameters
Given Calculated

Parameter Value Parameter Value

Pe 3·71× 102 D 1·34× 10−4
ε 2·08× 10−2 DD 6·95× 10−3

Using the small- and large-µ behaviour of the P function, we can ascertain the large-
and small-k behaviour of the graph. For small k, we have

S ∼ k̃onCTχ, k̃on→ 0. (6.11)

As expected, (6.11) shows that if there is no forward reaction (k̃on = 0), the bound
concentration will not change (S = 0). For large k, we have the following:

S ∼ 3
4
3χCTV

1
3 D̃

2
3 (x

2
3
max − x

2
3
min)

2
1
3 (1− Bi)Γ (

1
3 )RTL

1
3 h

1
3 (xmax − xmin)

, k̃on→∞. (6.12)

For our choice of parameters in Table 2 and (6.9), the asymptote is given by

S ∼ 3·08× 10−2 s−1, k̃on→∞, (6.13)

which is exactly the asymptote plotted in Fig. 4. The presence of a "nite asymptote for
S in the limit of large k̃on is physically reasonable, since no matter how fast the reaction
proceeds, the mass uptake will be limited by the amount of unbound ligand available for
assimilation.
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FIG. 4. S vs. log10 k as given by (6.10) for the parameters in Table 2, along with the asymptote given in (6.13)

7. Conclusions

In order to further their understanding of chemical and biological systems, scientists
must obtain accurate estimates of rate constants for chemical reactions. The advent of
SPR technology and its application in the BIAcoreTM device have allowed scientists to
measure the concentration of bound ligands accurately in real time. Unfortunately, such
experimental advances are useless without the necessary mathematical models to interpret
the data.

The mathematical model for the system is a convection�diffusion equation with a
boundary reaction. By introducing proper dimensionless variables, we determined that
there are four separate time-scales associated with the problem. On the convective time-
scale tc, the concentration of unbound ligand in the channel equilibrates, and on the slower
diffusive time-scale tD , the concentration of unbound ligand near the wall equilibrates.
Whenever diffusion into the binding surface dominates, the evolution of the bound state
evolves on the tw scale. However, in the more physically realizable case, the evolution of
the bound state evolves on the reaction time-scale t .

The key dimensionless group in the problem is the Damköhler number Da. If Da ¿
1, the reaction kinetics decouple from the transport effects. This case is desirable due to
the simple form of the solution, and it is the solution to this case which experimentalists
have been using to obtain estimates for the rate constants (Corr et al. 1994). In (4.15) we
established a bound on the velocity such that the kinetics can be considered divorced from
transport effects.

For the small Da case, we constructed the next-order correction to the well-known
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leading-order solution. This correction, which is O(Da), should provide improved results
and an increased range of validity of our expansion. The correction involves an integral
of a known quantity, but we obtained explicit closed-form solutions when the initial
bound concentration was a constant. The form of the correction suggested a multiple-
scale expansion, but the leading-order term of the multiple-scale expansion consists of an
in"nite series of terms. However, the series converges nicely for t = o(Da−1), and hence a
truncated version of the series might be useful.

Unfortunately, with current SPR technology one must often introduce a large number
of binding sites in order to get accurate measurements. This increase in RT can make the
threshold in (4.15) dif"cult to achieve. Therefore, we also analysed the case where Da =
O(1). In this case, the kinetic and transport effects are coupled. We solved for the relevant
concentration pro"le, and thus reduced our system to the nonlinear integrodifferential
equation (6.1). One can obtain important data about the rate constants by looking at the
small-time asymptotic form of the solution. We indicated how this small-time solution
would change as the rate constant varied, and we provided large- and small-k̃on behaviour
of the small-time solution.

In addition to providing improved estimates to the rate constants in selected situations,
the careful modelling and scaling in Sections 2 and 3 provides a sturdy mathematical
framework for further studies. Other areas for further research include dissociation kinetics,
the limiting behaviour of small and large K , reactant embedded in a small boundary
layer near the channel ceiling rather than on the channel ceiling surface itself, and the
consideration of other geometries.
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Appendix

The BIAcoreTM has L = 2·4 × 10−1 cm and h = 5 × 10−3 cm. In addition, the SPR
detection area is 1·4 × 10−1 cm long (BIAcoreTM System Manual, undated). We assume
that the detection area is symmetrically positioned, and thus xmin = 2·08 × 10−1 and
xmax = 7·92× 10−1.

Many of the physical parameters in the problem vary widely depending on the system
under consideration. Tables 3 and 4 provide a listing of values from the literature, as well
as the parameters used in this work. Some of the wide variation in parameter sizes can
be explained by describing the various studies. For D̃, Yarmush et al. (1996) describe the
normal range of diffusivities of peptides and proteins. The larger value in Lok et al. (1983)
is for bovine serum albumin (BSA), and the smaller value for "brinogen.

While Myszka (1997) gives the range of k̃off for which the BIAcoreTM provides
good results, others provide values for speci"c reactions. Stable complexes, such as those
that result from the binding of a major histocompatibility complex (MHC) class I Kb

molecule and a peptide derived from ovalbumin (Chen et al. 1994) or the binding between
monoclonal antibody 2.3 and BSA (Yarmush et al. 1996), have small values for k̃off. In
contrast, the binding between CD2, a T-lymphocyte cell-surface protein, and its ligands
(Davis et al. 1995) or between MHC with the T-cell receptor and peptide antigens (Corr et
al. 1994) is quite weak, leading to large values of k̃off.
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TABLE 3

Parameter values from the literature

Parameter
CT D̃ k̃off k̃on

Reference (10−11 mol/cm3) (10−7 cm2/s) (10−3 s−1) (108 cm3/(mol. s))

Chen et al. (1994) 9.1× 10−3 − 1.6× 10−2 6.5× 10−3 − 5.9× 10−2
Corr et al. (1994) 26 2.1
Davis et al. (1995) 160�800
Lok et al. (1983) 8.5
Ibid. 2.8
Myszka (1997) 10−3 − 102 10−2 − 102
Yarmush et al. (1996) 0.25�40 4�10 8.9 0.5�50

Used 1 2.8 10−3 − 102 10−2 − 104
1

TABLE 4
Parameter values from the literature

Parameter
K̃ RT V

Reference (10−9 mol/cm2) (10−12 mol/cm2) (cm/s)

Corr et al. (1994) 0.1
Davis et al. (1995) 3�9 1.2�8
Myszka (1997) 10−6 − 102 0.4�40
Yarmush et al. (1996) 0.25�4 0.36�0.6

Used n/a 1 1
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TABLE 5
Dimensionless parameters

Parameter Bound
Pe > 37·4
D 6 2·14× 10−1
Da > 2·43× 10−4
Dab > 1·33× 10−4
DD 6 1·11
K 2·5× 10−6 6 K 6 4× 104

Myszka (1997) indicates that the range of values of k̃on he provides for which
the BIAcoreTM provides good results can be extended under favorable circumstances.
Therefore, we use the moderate value in Subsection 5.3 and the full range in Subsection
6.2.

We use the values from Tables 3 and 4 to calculate our dimensionless parameters. The
exact parameters we use are listed in Tables 1 and 2. However, by using extremal values
of the dimensional parameters, we can obtain bounds on the dimensionless ones. We note
that the bound on Da allows it to be either o(1) or O(1). The bound on DD is created by
using a highly unlikely combinations of extremal values of our parameter. The much more
common case is the one quoted in the work, namely that DD ¿ 1.


