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SUMMARY: During desorption of penetrant-saturated polymers, a glassy skin can form at the exposed sur-
face. The associated dynamics are not purely Fickian due to viscoelastic relaxation effects in the polymer. A
model is presented which captures these nonlocal effects. The motion of the glass-rubber interface and the
accumulated desorbed flux are calculated. The model also describes trapping skinning, where an increase in
the driving force reduces the amount of penetrant released.

Introduction
One unusual feature of polymer-penetrant systems is a
change in the polymer from arubbery state when it is
nearly saturated to aglassystate when it is nearly dry.
Sometimes a glassy skin develops at the exposed surface
when a saturated polymer film or fiber is desorbed. This
phenomenon is calledliteral skinning since the polymer
is now in two states – the glassy skin and the deeper rub-
bery material1–3). Because the diffusion coefficient in the
glassy skin is much lower than in the rubbery region, de-
sorption of saturated films may be slowed4); such effects
must be taken into account in various industrial pro-
cesses3, 5, 6).

When certain polymer-penetrant systems are desorbed,
an even more unusual phenomenon calledtrapping skin-
ning can occur. An increase in the driving force for the
desorption will usually increase the accumulated flux
through an exposed surface. Trapping skinning occurs
when an increase in the force driving the desorption
decreasesthe accumulated flux. This behavior cannot be
fully explained by the lower molecular diffusion coeffi-
cient in the skin2, 3, 7, 8).

Though these anomalous phenomena incorporate
numerous physical mechanisms, one important factor is a
viscoelastic stress in the polymer entanglement network.
This stress, which is a nonlinear memory effect, depends
on the polymer’s relaxation time9–11). Edwards and
Cohen12, 13) have derived a set of model equations for gen-
eral polymer-penetrant systems of this type, though most
studies of this model have been concerned with sorption
experiments12–16). There has been one study of desorption
using this model17), but the results do not extend to the
case of arbitrary concentrations of the penetrant in the
external environment.

Two physical quantities are of particular interest when
modeling desorption processes: the motion of the glass-
rubber interface and the accumulated flux through the
boundary. We shall describe each of these quantities in

terms of dimensionless parameters for the desorption pro-
blem with arbitrary exterior concentration.

Governing equations
Though the diffusion coefficientD in such polymer-pene-
trant systems may vary severely with concentration18),
Crank7) and Crank and Park8) note that the lower diffusion
coefficient in the glassy region is not enough to explain
trapping skinning. Therefore, though a Fickian-type
model may capture the dynamics in the rubbery region,
for diffusion in the skin a more sophisticated model must
be employed.

Thus, motivated by the discussion in the Introduction,
we postulate that the chemical potential depends not only
on the dimensionless concentrationC, but also on the
stressr in the polymer network12). Deriving the mass bal-
ance law from the chemical potential, we obtain the fol-
lowing dimensionless equations17):

Ct � D�C�Cx � rx� �x x A 0; t A 0 �1a�

rt � b�C�
bg

r � cC� Ct �1b�

whereb�C� is the inverse of the relaxation time andc is a
positive constant. Note that Eq. (1b) is similar to the evo-
lution equation for viscoelastic stress, but recall thatr is
the stress for the polymer network, rather than the total
stress in the system.

The glassy state of the polymer (denoted by sub- and
superscriptsg) is defined as havingC a C�, whereC� is
the glass-rubber transition concentration; the rubbery
state (denoted by sub- and superscriptsr) is defined as
having C A C�. In order to obtain a system which is
amenable to asymptotic techniques, we approximate
b�C� and D�C� by their averages in each state, thus
obtaining a piecewise constant form, as in Crank19).
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Though such choices are obviously idealizations of the
true behavior, modelswith suchforms for D andb have
produced qualitative agreement with various experimen-
tal phenomena12,20,21).

The piecewise-constantform for b is motivatedby the
fact that the relaxation time decreases radically at the
glass-rubber transition, which causesa corresponding
increase in b22,23). Hence, we let bg=br � e, where
0 a e s 1, and use it as our perturbation parameter. In
addition, a severeincreasein D is localized about the
glass-rubber interface where C � C�9,20,22–26), so we set
Dg � O�e�. This small diffusion coefficient can inhibit
the desorption processif a glassyskin forms. SinceDg is
so small, the dominant contribution to the flux in the
glassyregion is givenby thestressterm.This agrees with
the observation that nonlinear relaxation effects aremost
pronounced in theglassyregion.

Wemodelthedesorptionof apolymer which is initially
saturated,so C�x; 0� � 1. Sinceany prestressingdecays
awayon a fast time scale27), we treatthepolymerasiniti-
ally unstressed,so r�x; 0� � 0. We choose a highly
permeable exterior surface, so the radiation condition
therereducesto C�0; t� � Cext; whereCext is the concen-
tration of the penetrant in the externalenvironment.Our
problemwill involve matching solutionsin theglassyand
rubberystates.Thus,it is necessary to imposeconditions
at the moving boundary x� s�t� separating the two
regions.Since no additional physical processes occur at
theglass/rubbertransition,theseconditionsarecontinuity
of the penetrant concentration at the transition value C�,
continuityof stress,andcontinuity of flux28).

By modeling the polymer as a semi-infinite slab, we
areableto neglect shrinking of thepolymermatrix asit is
desorbed3). However, we expect the effects of such
shrinkage to manifest themselves through a negative
(compressive) stress.The Ct term in Eq. (1b) is negative,
while c is positive. Therefore,we may obtaina negative
stressif we allow the Ct term to dominate by setting
c � O�e�. This model then corresponds to the one pro-
posedby Tang29) andrefinedandstudiedby Durningand
hiscolleagues3,22,30,31).

The two states
Usingtheaforementionedsizesfor our parameters, in the
rubberyregionequations(1) become,to leading order,

Cr
t � DeCr

xx x A s�t�; t A 0 �2a�

rr 3 0 �2b�

whereDe � Dr is the integral sorptionDeborah number
for thesystemdefinedin Wu andPeppas32). We note from
Eq. (2b) that to leading order the rubbery polymer
entanglement network is stress-free.Hence viscoelastic

effects are unimportantand we obtain the Fickian equa-
tion (2a).

If Cext F C�, the entire polymer is alwaysrubberyand
the purely Fickian solution may be obtainedusing stan-
dard techniques.However, if Cext a C�, thepolymermust
immediatelydevelop a glassyskin at theboundary. Since
thereare now two statesin the polymer, we must solve
the full moving boundary-value problem.Using Eq. (2b)
and information from the next-order stressterm in the
rubbery region, continuity of flux at the glass-rubber
interfacemaybewritten as

Cg
x�s�t�; t� � DeCr

x�s�t�; t� �3�

The left-hand side of Eq. (3) actually arisesfrom the
stress term, which dominatesthe flux since Dg � O�e�.
However, molecular diffusion dominatesin the rubbery
region, asindicatedby theform of Eq. (2a).

Using the aforementioned sizesfor our parameters, in
theglassyregion equations (1) become,to leadingorder,

Cg
tt � Cg

t � Cg
xxt 0 a x a s�t�; t A 0 �4a�

rg
t � rg � Cg

t �4b�

Note that the left-handsidesof our operators indicate
anunderlying eÿt behavior, not only in thestress,but also
in theconcentration.This is a direct resultof viscoelastic
memory effects.

Asymptotics
One canwrite thesolutionto thesystemof equations (2)–
(4) asa setof integral equations. Performing small-time
asymptotics on these integral equations subject to the
front conditions, we have the following short-time
expressionfor theglass-rubberinterface27):

s�t� l 2s0

��
t
p

�C� ÿ Cext� exp�ÿs2
0�

erf s0
� �1ÿ C�� exp�ÿs2

0=De� ������De
p

erfc�s0=
������
De
p � ;

t e 0 �5�

We note that the front movesin a Fickian way because
the memory terms have not had time to evolve. As C�
increases, not asmuch penetrantneedsto desorb in order
for the solution to attain C� at the front, so s0 increases.
As De increases, the flux into the front from the rubbery
region posesa greaterbarrier to surmount in orderto pro-
pagate the front, and hence s0 decreases. As Cext

increases, the flux out of the front to the glassyregionis
smaller, andsos0 decreasesin this caseaswell.

Graphsof the calculated valuesof C vs. x for various
valuesof t areshownin Fig. 1. Gapsappearin the graph
dueto the fact thatwe solvethe front condition asympto-
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tically ratherthanexactly. Thoughthe flux is continuous
acrossthefront, Cx is notsincetheflux nowhastwo com-
ponents.The memory effects have not yet had enough
time to becomedominant,sotheprofilesarequalitatively
similar to those for Fickian diffusion. Graphsof r vs. x
for various valuesof t are shown in Fig. 2. We note the
negative(compressive) stressin the polymer entangle-
mentnetwork.

Performinglarge-timeasymptoticsontheintegralequa-
tionssubject to thefront conditions,wehavethefollowing
long-timeexpressionfor theglass-rubberinterface27):

s�t� l 2svt

sv � C� ÿ Cext

2
��������������������������������������1ÿ Cext��1ÿ C��

p ; t e v �6�

We note that for large time, we havea constant front
speedwhich is independentof De. Thus, Fickian diffu-
sion is now dominated by viscoelastic memory effects.
As expected,the larger thedifferential betweentheexter-
ior concentrationCext andthe transitionconcentrationC�,
thefaster thefront will move.

Graphsof C vs. x for various valuesof t areshown in
Fig. 3. Once again, gaps form in the graph when the
asymptoticsbegin to lose validity. Due to the latent eÿt

behavior in Cg, a glassyskin developswheretheconcen-
tration in the polymer is within eÿt of that in the external
environment.

Graphsof r vs. x for various valuesof t areshown in
Fig. 4. Once again, we have a negative (compressive)
stress in the polymer network. Insteadof the monotonic
behavior of the stressfor small time, we note that for
large t, the magnitude of the stressattainsa maximum
value behind the glass-rubberinterface.Hence the stress
builds up in the glassyregionbefore being releasednear
the glass-rubberinterfaceasa result of the disentangling
of the polymer network. This type of behavior hasbeen
seenpreviously in this modelin sorptionstudies15).

Someremarkson trapping skinning
To investigate the existenceof trapping skinning, we
define F to be the accumulatedflux throughthe exposed
boundary. The driving force for the desorption can be

Fig. 1. C�x; t� vs. x for C� � 1=2, De � 4, Cext � 1=4. In
increasingorderof thickness:t � 0:0027,0:009, 0:03, and0:1.
Thevertical linesindicatetheglass-rubbertransition

Fig. 2. r�x; t� vs. x for C� � 1=2, De � 4, Cext � 1=4. In
increasingorderof thickness:t � 0:0027,0:009, 0:03, and0:1.
Theglasstransitionoccurswherethecurvesintersect ther-axis

Fig. 3. C�x; t� vs. x for C� � 1=2, De � 4, Cext � 1=4. In
increasingorderof thickness:t � 50,100,200,400.Thevertical
li nesindicatetheglass-rubbertransition

Fig. 4. r�x; t� vs. x for C� � 1=2, De � 4, Cext � 1=4. In
increasingorder of thickness: t � 50, 100, 200, 400. The glass
transition occurswherethe curvesintersectthe r-axis after the
peak
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enhancedby reducing Cext, which forces a greaterflux
throughtheexposedsurface.

If Cext A C�, the polymer is always rubbery, so we
obtainthefollowing Fickian-typeresult:

F � 2 1ÿ Cext� �
���������
De

p

r
lim
t e v

��
t
p �7�

Sincethe polymer is taken to be semi-infinite, an infi-
nite amountof penetrant is desorbed. This divergenceof
theflux is a direct resultof theFickiannature of thelead-
ing-orderoperator.

If Cext a C�, the polymer at the exposed boundary is
alwaysglassy. Note from Fig. 3 and Fig. 4 that the flux
through the exposedsurfaceis exponentially small for
large t. Though we cannotexplicitly compute a closed
form for F, this fact providesstrong evidence that F is
finite27). If this is indeedthe case,decreasingCext (and
henceincreasing the driving force) hasreducedthe flux
desorbedfrom an infinite to a finite quantity. Therefore,
we believethatthepolymer systemwe aremodeling does
exhibit trappingskinning.

Conclusions
During the desorption of saturatedpolymers, a glassy
skin can form at the exposed surface.The formation of
sucha skin slowsdesorption4) becausethe molecular dif-
fusion coefficient is smaller in the glassyregion1–3). In
addition, trappingskinning can occur, so an increasein
the driving force wil l decreasethe total flux throughthe
exposed surface. Molecular diffusion alone cannot
describe such behavior; rather, viscoelastic memory
effectsmustalsobeconsidered2,3,7,8).

Due to the highly permeableinterface,Cext determines
the state of the polymer at the exposed surface. If
Cext F C�, the polymer is alwaysrubbery, andthe result-
ing problem canbesolvedin closedform. Sincememory
effects are negligible in the rubbery state23), the solution
behavesin a purely Fickian way, and due to the infini te
extentof the polymer, the accumulated flux throughthe
exposedsurfacedivergeslike t1=2.

When Cext � C�, there is an instantaneouschange in
the polymer from rubberto glassat the exposedsurface.
The glass-rubber interfaceinitially moveslike t1=2 since
the memory hasnot had time to develop. As time pro-
gresses,thefront moveswith constantspeed,asin caseII
diffusion in sorption experiments33). Sincethe underlying
natureof the operator in the glassyregion(Eq. (4a)) has
an exponential decay in time, there is strong evidence
that the accumulated flux is finit e for this case.Since
decreasingCext corresponds to increasing the driving
force,this phenomenoncorrespondsto trappingskinning.

Nomenclature
The equation number where a particular quantity first
appearsis listed,if applicable.

C�x; t� concentrationof penetrant at positionx andtime t (Eq.
(1a))

D�C� moleculardiffusioncoefficient for system(Eq.(1a))
De integralsorption Deborahnumberfor thesystem(Eq.

(2a))
F accumulatedflux throughtheexposedsurface
s�t� positionof glass-rubberinterface,definedby

C�s�t�; t� � C�
t time from beginningof experiment (Eq. (1a))
x distancefrom boundary(Eq. (1a))
b�C� inverseof therelaxation time (Eq.(1b))
c dimensionlessparameter (Eq. (1b))
e perturbationexpansionparameter, valuebg=br

r�x; t� stressin polymerentanglement networkat positionx
andtime t (Eq. (1a))

Othernotation

ext asa subscript,usedto indicateavalueexteriorto the
polymer

g asa sub-or superscript, usedto indicate theglassystate
(Eq. (1b))

r asa sub-or superscript, usedto indicate therubbery
state

0 asa subscript,usedto indicatea term in anexpansion
for small t (Eq. (5))

� asa subscript,usedto indicateaquantity at thetransi-
tion valuebetweentheglassyandrubberystates

v asa subscript,usedto indicatea term in anexpansion
for large t (Eq. (6))
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