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Abstract. Asymptotic results are presented for a simplified model for shear-band formation
which neglects the effects of diffusion but still captures much of the important dynamics. Regular
perturbation expansions fail, so a uniform expansion is constructed which tracks the divergent behav-
ior of the simplified model. Severe computational difficulties exist in the form of finite-time blowup
of the temperature and strain rate for the simplified model, but an adaptive numerical scheme tracks
the severe blowup behavior well. This method, which is second-order accurate and has automatic
mesh- and time-step refinement capabilities, also captures the severe band narrowing and strain rate
growth in solutions to the full model with heat conduction. Comparison between the asymptotic and
numerical methods shows good agreement, and remarks are made regarding asymptotic solutions of
the full model.
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1. Introduction. Shear bands are thin regions of high strain that develop in
materials under intense thermoplastic shear deformations. Since they often lead to
premature failure in the material, it is important for scientists to understand them.
They are observed in many physical processes, including armor penetration and high-
speed machining. Study of the solution behavior is difficult due to the rapid growth of
temperature, strain, and strain rate within the band as well as the severe localization
or narrowing of the band itself. See Figures 6.6–6.9 for a sample of the severe behavior
experienced in this problem. The book by Bai and Dodd [1] gives a background
discussion of the area as well as many references.

Shear bands are of such interest that many researchers, using different techniques,
have attempted to study them. Batra [2] and Batra and Ko [3] have studied shear-
band formation using adaptive numerical methods in one and two dimensions. Bayliss
et al. [4] have performed a numerical study with a highly accurate spectral method.
DiLellio and Olmstead [7], [8] considered asymptotic solutions of shear bands when
the velocity of the material is considered to be a known discontinuous function across
the shear band. Drew and Flaherty [9] did a numerical study of a similar shear band
model, using an adaptive moving-grid scheme. Maddocks and Malek-Madani [15]
have analyzed the steady-state equations and found a Liapunov functional in the case
of a particular constitutive stress-strain relationship. Needleman studied the shear
band problem in [16]. Tzavaras [19] has given several rigorous analyses of shear-band
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models. Wright and Walter [24] performed several numerical studies of the shear-band
model (also see [24] for more papers by Wright on modeling and asymptotics, as well
as [20], [22], and [23]). Finally, we note the recent numerical work by Glimm, Plohr,
and Sharp [12], [13].

In section 2, we provide a systematic derivation of the mathematical model for
this process, which involves a system of partial differential equations. By making
several reasonable assumptions, we are able to simplify our model. In sections 3 and
4, we construct a regular perturbation expansion that tracks the true solution until
blowup begins. The regular perturbation expansion is found to be flawed, and in
section 5, a uniform perturbation approximation is derived that tracks the blowup
behavior more accurately. Using a second-order, implicit finite-difference method
with automatic mesh- and time-step refinement, described in section 6, we also find
numerical approximations for the solutions. These numerical results demonstrate
good qualitative agreement with our analytical solutions. We then include the effects
of heat conduction and note that the resulting system cannot support unbounded
solutions. However, numerical solutions exhibit severe band narrowing and extreme
growth in strain rate, and hence our adaptive scheme is well-suited to capture the
physical behavior. Last, we make some remarks in section 7 regarding the asymptotic
solution of the more robust model.

2. Governing equations. We begin with the dimensional equations governing
our model. First, we have the balance of linear momentum, neglecting pressure and
gravitational forces:

ρ
Dṽ

Dt̃
= ∇ · τ̃ ,(2.1)

where ρ is the density, ṽ is the velocity, t̃ is time, and τ̃ is the stress tensor. In (2.1)
we treat ρ as a constant. Also, we have the dimensional energy balance:

ρCp
Dθ̃

Dt̃
= k∇2θ̃ + τ̃ : ˙̃Γp,(2.2)

where Cp is the heat capacity at constant pressure, θ̃ is the temperature, k is the

thermal conductivity, and ˙̃Γp is the rate of plastic strain tensor. The second term on
the right-hand side models the conversion of plastic work into thermal energy. The
plastic strain rate is given by the following stress-strain relation:

∂τ̃

∂t̃
= C

(
∇ṽ − ˙̃Γp

)
,(2.3)

where C is the constitutive 4-tensor of elastic moduli.
We wish to model a solid on the interval −H ≤ x̃ ≤ H undergoing a simple

shearing motion in the ỹ direction. Therefore, the only velocity in the problem is ṽỹ
and the only variations are in x̃, so (2.1)–(2.3) become

ρ
∂ṽỹ

∂t̃
=
∂τ̃x̃ỹ
∂x̃

,(2.4)

ρCp
∂θ̃

∂t̃
= k

∂2θ̃

∂x̃2
+ τ̃x̃ỹ

˙̃Γx̃ỹ,p,(2.5)
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∂τ̃x̃ỹ

∂t̃
= µ

(
∂ṽỹ
∂x̃
− ˙̃Γx̃ỹ,p

)
,(2.6)

where µ is the elastic shear modulus. In addition, we need a constitutive relation that
connects τ̃x̃ỹ to the other parameters in the problem:

τ̃x̃ỹ

(
θ̃, ˙̃Γx̃ỹ,p

)
=

κ

g̃′(θ̃)
˙̃Γ
m

x̃ỹ,p,(2.7)

where m is a constant, κ is the stress-hardening coefficient, and g̃′(θ̃) models the
dependence of the stress on temperature. Here the prime indicates differentiation
with respect to the argument—we have introduced the prime into g̃ to simplify things
later on.

It is often the case in applications that m is quite small for many metals; however,
in this paper we will not use it for a perturbation parameter. We expect the stress to
decrease as the temperature gets large (see the introduction in Wright [22]), and so
we require that

lim
θ̃→∞

g̃′(θ̃) =∞.(2.8)

An equation of the form of (2.7) (without the temperature dependence) is called an
Ostwald-de Waele model [5] in fluid dynamics.

We postulate an arbitrary initial temperature distribution:

θ̃(x̃, 0) = θ̃i(x̃).(2.9)

We assume that the ends are insulated:

∂θ̃

∂x̃
(−H, t̃) = 0,

∂θ̃

∂x̃
(H, t̃) = 0.(2.10)

The simple shear is modeled by a velocity given initially and at the boundaries:

ṽỹ(x̃, 0) = ṽi
x̃

H
, ṽỹ(−H, t̃) = −ṽi, ṽỹ(H, t̃) = ṽi.(2.11)

Motivated by [24], we introduce dimensionless variables as follows:

x̃ = Hx, θ̃(x̃, t̃) = θcθ(x, t), ṽỹ(x̃, t̃) = Hγ̇cv(x, t), g̃′(θ̃) = γ̇mc g
′(θ),(2.12)

t̃ =
t

γ̇c
, τ̃x̃ỹ(x̃, t̃) = κσ(x, t), ˙̃Γx̃ỹ,p(x̃, t̃) = γ̇cγ̇p(x, t),(2.13)

where θc is a characteristic temperature derived from the initial condition and γ̇c is
a characteristic strain rate for the problem. Introducing (2.12) and (2.13) into (2.6)
yields

κ

µ

∂σ

∂t
=
∂v

∂x
− γ̇p.(2.14)

However, using our values for our parameters from the appendix, we see that κ/µ =
6.25 × 10−3. Therefore, it is reasonable to make the simplifying assumption that
κ/µ = 0, which results in the rigid/plastic approximation. This assumption, which is
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used in Glimm, Plohr, and Sharp [12], means that the stress evolution occurs on a
much slower time scale than the others in the problem.

With this assumption, one can replace γ̇p by ∂v/∂x. Using this fact, (2.12), and
(2.13) in (2.4), (2.5), and (2.7), we have

∂v

∂t
= α1

∂σ

∂x
,(2.15)

∂θ

∂t
= λ

∂2θ

∂x2
+ α2σ

∂v

∂x
,(2.16)

σ(x, t) =
1

g′(θ)

(
∂v

∂x

)m
,(2.17)

where

α1 =
κ

ρH2γ̇2
c

, α2 =
κ

ρCpθi
, λ =

k

ρCpH2γ̇c
,(2.18)

and we have defined g′(1) ≡ 1.
Introducing our dimensionless variables into (2.9)–(2.11), we have new dimension-

less boundary conditions:

θ(x, 0) = θi(x),(2.19)

∂θ

∂x
(1, t) = 0,(2.20)

∂θ

∂x
(−1, t) = 0,(2.21)

v(x, 0) = vix,(2.22)

v(1, t) = vi,(2.23)

v(−1, t) = −vi.(2.24)

We now make the simplifying assumption that θi(x) is even in x. In this case,
we see from (2.15)–(2.24) that v is odd in x and θ is even in x. Therefore, we may
redefine our problem on the interval 0 ≤ x ≤ 1 with the following boundary conditions
replacing (2.21) and (2.24):

∂θ

∂x
(0, t) = 0,(2.25)

v(0, t) = 0.(2.26)
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3. The outer solution. The system (2.15)–(2.17), (2.19), (2.20), (2.22), (2.23),
(2.25), and (2.26) is quite complicated to solve, even asymptotically. However, using
our parameters from the appendix, we see that λ varies between 10−5 and 10−3.
Therefore, motivated by the analysis in [23], at first glance it may seem reasonable to
set λ = 0 in (2.16), which corresponds to the total absence of diffusion. The resulting
equation is

∂θ

∂t
= α2σ

∂v

∂x
.(3.1)

This substitution may be justified if any perturbation in the initial condition
evolves on a length scale longer than the O(λ1/2) scale associated with heat con-
duction. If this is true, then the magnitude of the heat conduction term in (2.16)
will always be smaller than the other terms in the equation. Unfortunately, the phe-
nomenon of shear-band formation involves the narrowing of the band over time (until
the unloading stage, when it actually widens slightly; see section 6). Hence, as will be
shown in the numerical simulations, structures often form which have length scales
smaller than O(λ1/2). Though this simplified model should thus be considered as a
test of our asymptotic and numerical techniques, we shall examine the results to see
if they qualitatively approximate the true physical system.

Some remarks on including diffusion in the asymptotics are presented in section
7, but for now we analyze the system with (3.1) replacing (2.16). We shall examine
the resulting solutions to see how closely these asymptotic results model the full
physical system. The results in this paper and their subsequent interpretation will
then provide a useful foundation on which to base further examinations of extensions
of the simplified model presented here.

We wish to examine the case where a small spatial discontinuity in the initial
temperature distribution causes a shear band. Therefore, we define

θi(x) = 1 + εf ′(x/ε), f ′′(0) = 0, 0 < ε� 1.(3.2)

The second condition in (3.2) follows from (2.25).
We begin by solving our problem in the “outer” region, that is, far from x = 0.

We expand our functions in ε and neglect any transcendentally small terms. For
reasons that will become clear later, we let

v(x, t) = v0(x, t) + ε2v2(x, t) + o(ε2), θ(x, t) = z(x, t) + ε2θ2(x, t) + o(ε2),(3.3)

σ(x, t) = σ0(x, t) + ε2σ2(x, t) + o(ε2).(3.4)

Substituting (3.3) and (3.4) into (2.15), (3.1), and (2.17), we have, to leading orders,

∂v0

∂t
+ ε2

∂v2

∂t
= α1

(
∂σ0

∂x
+ ε2

∂σ2

∂x

)
,(3.5)

∂z

∂t
+ ε2

∂θ2

∂t
= α2σ0

∂v0

∂x
+ α2ε

2

(
σ2
∂v0

∂x
+ σ0

∂v2

∂x

)
,(3.6)

σ0 + ε2σ2 =
1

g′(z)

(
∂v0

∂x

)m
+ ε2σ0

[
m
∂v2

∂x

(
∂v0

∂x

)−1

− g′′(z)θ2

g′(z)

]
.(3.7)
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In addition, we have the following boundary conditions for our leading-order terms,
which result from (3.2), (2.22), (2.26), and (2.23):

z(x, 0) = 1,(3.8)

v0(x, 0) = vix,(3.9)

v0(0, t) = 0, v0(1, t) = vi.(3.10)

We once again note that the initial condition (3.9) satisfies the boundary condi-
tions (3.10) for all time, so we have

v0(x, t) = vix.(3.11)

Substituting (3.11) into (3.7) and (3.5), we have

σ0 =
vmi
g′(z)

,(3.12)

∂σ0

∂x
= 0.(3.13)

Substituting (3.12) into (3.13), we may immediately conclude that g′(z) (and hence
z) is independent of x. Thus, we see that z immediately satisfies the no-flux boundary
conditions (2.20) and (2.25). We then substitute (3.12) into (3.6) to obtain

dz

dt
= α2viσ0,(3.14)

g′(z)
dz

dt
= α2v

m+1
i ,(3.15)

g(z)− g(1) = α2v
m+1
i t,(3.16)

where we have used (3.8).
We may invert (3.16) for any given g(z) to find z. In particular, in order to

compare with our numerics, we shall study the following expression:

g′(θ) = θp, p > 0.(3.17)

Note that this function satisfies our criterion that g′(1) = 1. Substituting (3.17) into
(3.16) and inverting, we have

z(t) = (1 + βt)1/(p+1), β = (p+ 1)α2v
m+1
i .(3.18)

We note that since our perturbation does not affect the outer solution, (3.18) is the
solution to all orders unless an effect from the inner expansion perturbs the boundary
conditions at x = 0.
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4. The inner solution. To solve near x = 0, we transform to boundary-layer
variables by letting

ξ =
x

ε
, θ(x, t) = θ̂(ξ, t), v(x, t) = v̂(ξ, t), σ(x, t) = σ̂(ξ, t).(4.1)

Doing so, (2.15), (3.1), (2.17), (3.2), (2.25), (2.22), and (2.26) become

∂v̂

∂t
=
α1

ε

∂σ̂

∂ξ
,(4.2)

∂θ̂

∂t
=
α2

ε
σ̂
∂v̂

∂ξ
,(4.3)

σ̂ =
1

g′(θ̂)εm

(
∂v̂

∂ξ

)m
,(4.4)

θ̂(ξ, 0) = 1 + εf ′(ξ),(4.5)

∂θ̂

∂ξ
(0, t) = 0,(4.6)

v̂(ξ, 0) = viεξ,(4.7)

v̂(0, t) = 0.(4.8)

To construct the proper expansions for our dependent variables, we note that to
O(1) the outer solution z satisfies all the necessary boundary and initial conditions,

and hence we would not expect any O(1) variation in θ̂. In addition, from our previous
work we expect the velocity v to be undisturbed up to O(ε). Therefore, we let

v̂(ξ, t) = viεξ + ε2v̂2(ξ, t) + o(ε2), θ̂(ξ, t) = z(t) + εθ̂1(ξ, t) + o(ε).(4.9)

From (4.2), we see that we should let

σ̂(ξ, t) = σ0(t) + εσ̂1(ξ, t) + o(ε).(4.10)

Substituting (4.9) and (4.10) into (4.2)–(4.8), we have, to leading orders,

ε2
∂v̂2

∂t
= α1

∂σ̂1

∂ξ
,(4.11)

ε
∂θ̂1

∂t
= ε

(
α2σ0

∂v̂2

∂ξ
+ α2viσ̂1

)
,(4.12)

εσ̂1 = ε
vmi
g′(z)

[
m

vi

∂v̂2

∂ξ
− θ̂1g

′′(z)
g′(z)

]
,(4.13)
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θ̂1(ξ, 0) = f ′(ξ),(4.14)

∂θ̂1

∂ξ
(0, t) = 0,(4.15)

v̂2(ξ, 0) = 0,(4.16)

v̂2(0, t) = 0,(4.17)

where we have used (3.12) and (3.14).
Substituting (4.13) into (4.11), we have

m

vi

∂v̂2

∂ξ
− θ̂1g

′′(z)
g′(z)

= σ̂1(t) = 0.(4.18)

The last equality in (4.18) requires an explanation. We note that our O(ε) disturbance
in θ decays as we reach the outer solution. Therefore, we expect no disturbance in
the outer solution for the temperature to this order. In addition, our velocity profile
also matches our outer solution to O(ε), so the only disturbance will be at O(ε2).
Therefore, we conclude that our solution given by (3.12) is good to O(ε2), and hence
(4.18) follows.

However, (4.18) cannot be satisfied by the initial conditions given by (4.14) and
(4.16). Therefore, we must construct an initial layer in which v̂2 increases to satisfy
(4.18). We need a layer in v2, not in z, so we let

η =
t

ε2
, θ̂(ξ, t) = 1 + εΘ(ξ, η), v̂(x, t) = εviξ + ε2V (ξ, η),(4.19)

σ̂(x, t) ∼ Σ(ξ, η).(4.20)

Making these substitutions in (4.2), (4.3), and (2.17), we obtain

ε
∂V

∂η
= α1

∂Σ

∂ξ
,(4.21)

ε−1 ∂Θ

∂η
= α2Σ

(
vi + ε

∂V

∂ξ

)
,(4.22)

Σ = vmi + εvmi

[
m

vi

∂V

∂ξ
−Θg′′(1)

]
,(4.23)

where we have used the fact that g′(1) = 1. In addition, (4.5)–(4.8) become

Θ(ξ, 0) = f ′(ξ),(4.24)

∂Θ

∂ξ
(0, η) = 0,(4.25)
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V (ξ, 0) = 0,(4.26)

V (0, η) = 0.(4.27)

From (4.22), we see that we need an initial layer in V only, as expected. Therefore,
we may use (4.24) as our expression for Θ throughout the region, and (4.21) becomes
the following:

∂V

∂η
= α1v

m
i

∂

∂ξ

[
m

vi

∂V

∂ξ
− g′′(1)f ′(ξ)

]
.(4.28)

Letting

h(ξ, η) = V (ξ, η)− vig
′′(1)f(ξ)

m
,(4.29)

we have

∂h

∂η
= D

∂2h

∂ξ2
, D = α1mv

m−1
i ,(4.30)

h(0, η) = 0, h(x, 0) = −vig
′′(1)f(ξ)

m
.(4.31)

Equations (4.30) and (4.31) are easily solved using a Green’s function approach [6,
p. 26]; the solution for V is found to be

V (ξ, η) =
vig
′′(1)

m

×
[
f(ξ)− 1

2
√
Dπη

∫ ∞
0

f(φ)

{
exp

[
− (ξ − φ)2

4Dη

]
− exp

[
− (ξ + φ)2

4Dη

]}
dφ

]
.(4.32)

Since V as η →∞ must match to v̂2 as t→ 0, we have the following:

v̂2(ξ, 0) =
vig
′′(1)f(ξ)

m
, f(0) = 0,(4.33)

where the second condition comes from satisfying (4.27). Therefore, we see that in
this initial layer the velocity adjusts itself so that (4.33) replaces (4.16). Note that
(4.33) indeed solves (4.18) evaluated at t = 0, as the initial condition should.

Using our expression for σ̂1 in (4.12), we may solve to obtain

θ̂1(ξ, t) = f ′(ξ)[g′(z)]1/m,(4.34)

where we have used (3.14), (4.14), and the fact that g′(1) = 1. Note from (2.8)
that our perturbation may grow without bound. The unbounded growth results from
neglecting diffusion in our system, since physically we would expect heat to conduct
away from the hot spot at the center of the band. Mathematically, we expect that as
the temperature grows, its second spatial derivative would become so large that, even
with the small coefficient λ, that term would balance the others in (2.16).

In addition, it will be shown in section 5 that our spatially dependent perturbation
will eventually grow faster than our spatially homogeneous solution. This dominance
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of the supposedly smaller first-order term, which occurs even in the presence of diffu-
sion (as will be shown in section 7), is consistent with the idea of the formation of a
shear band.

For completeness, we note that the uniformly valid solution is given by the inner
solution

θ(x, t) = z(t) + εf ′(x/ε)[g′(z)]1/m.(4.35)

Substituting (4.34) into (4.18), we have

v̂2(ξ, t) =
vif(ξ)

m
[g′(z)]1/m−1g′′(z),(4.36)

where we have used (4.17). Therefore, a uniformly valid solution for the velocity is
given by adding (4.36) and (4.32) and subtracting the common part, namely (4.33):

v(x, t) = vix+ ε2
vi
m

{
f(x/ε)[g′(z)]1/m−1g′′(z)

− g′′(1)

2
√
Dπt

∫ ∞
0

f(φ/ε)

{
exp

[
− (x− φ)2

4Dt

]
− exp

[
− (x+ φ)2

4Dt

]}
dφ

}
.(4.37)

Once again, we note that this expression is good only to O(ε), since we have not
calculated the necessary second-order term in the outer region.

For purposes of comparison with numerical results, we shall use g′(θ) as given in
(3.17). In addition, we shall use a perturbation given by

f ′(ξ) = e−ξ
2

=⇒ f(ξ) =

√
π

2
erf ξ.(4.38)

Using (4.38) and (3.17), we see that (4.35) becomes

θ(x, t) = z + εe−(x/ε)2

zp/m,(4.39)

where z is given by (3.18). With our choice of f(ξ) in (4.38), (4.37) becomes the
following:

v(x, t) = vix+ ε2
pvi
√
π

2m

[
erf(x/ε)zp/m−1 − erf

(
x√

4Dt+ ε2

)]
,(4.40)

where z is once again given by (3.18) and we have used the fact that g′′(1) = p.
Note that (4.40) does not satisfy (2.23) to O(ε2). Therefore, a further expansion

in the outer region would need to be constructed in order to satisfy (2.23) to higher
accuracy.

5. Finite perturbations and blowup. From (4.39) we note that the second
term in our perturbation solution grows without bound. In general, m is small, which
means that we would expect this term to grow faster than our leading-order term. This
growth in the narrow boundary layer is reminiscent of shear-band dynamics. However,
this behavior violates the implicit assumption of the perturbation expansion: further
terms in the expansion should always be smaller than the ones that come before.

We verify this by looking at the particular case given by (3.18) and (4.38). Check-
ing (4.39) at x = 0, we see that the two terms are of the same size when

t = O
(
εm(p+1)/(m−p)

)
.(5.1)
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This bound on t is not very large because m is small.
Since we have seen that the O(ε) perturbation eventually causes an O(1) effect,

we now treat it as a finite perturbation by letting

δ = εf ′(ξ).(5.2)

(The variable δ is used to remind us that this substitution does indeed represent
something small.) This substitution is possible since ξ is basically a parameter in the
analysis in section 4. This makes any derivative with respect to ξ on the order of ε.
Though our velocity profile v̂ does not depend in a straightforward way on δ, the
derivative does, and hence we define the following new variables:

θ̂(ξ, t) = θ̂0(δ, t) + o(1),
∂v̂

∂ξ
= εw(δ, t) + o(1).(5.3)

Since ∂v/∂x = O(ε), we see that v̂ = O(ε). Therefore, substituting (5.2) and (5.3)
into (4.2), we have that ∂σ̂/∂δ = O(ε).

Substituting (5.2) and (5.3) into (4.3)–(4.5) and (4.7) and expanding to leading
orders, we have

∂θ̂0

∂t
= α2wσ̂,(5.4)

σ̂ =
wm

g′(θ̂0)
,(5.5)

θ̂0(δ, 0) = 1 + δ,(5.6)

w(δ, 0) = vi.(5.7)

We note that (4.6) is satisfied by our definition of δ.
Since we know from our previous discussion that σ̂ is a function of t only, we

obtain

w =
vig
′
m(z)

g′m(θ̂0)
,(5.8)

where we have used (3.12). Substituting (5.8) into (5.4) and expanding to leading
order, we have the following:

∂θ̂0

∂t
= α2σ0

vi[g
′(θ̂0)]1/m

[g′(z)]1/m
,(5.9)

g′m(θ̂0)
∂θ̂0

∂z
= g′m(z),(5.10)

where we have used (3.14).
Since 0 ≤ g′m(z) ≤ 1, we see that gm(z) must be strictly increasing. In addition,

we note that

g′m(∞) = 0, g′m(1) = 1.(5.11)
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Lastly, we choose

gm(∞) = 0.(5.12)

This is reasonable given (5.11), and any arbitrary constant can be taken out of the
problem as shown below. Therefore, we see that gm(z) ≤ 0. Continuing to simplify,
we obtain

θ̂0 = g−1
m (gm(z)− gm(1) + gm(1 + δ)) , g−1

m (gm(z)) = z,(5.13)

where we have used (3.8) and (5.6).
Equation (5.13) provides us with another form of our solution. Indeed, upon sub-

stituting δ = εf ′(ξ) and expanding for small ε, one may verify that (5.13) does indeed
replicate our results from section 4 to leading two orders. However, our expression
(5.13) can also blow up, since g−1

m (0) = ∞. Therefore, we must check the following
equation:

gm(z) = gm(1)− gm(1 + δ).(5.14)

But (5.14) will always be satisfied. Why? Since gm is strictly increasing, gm(1) <
gm(1) − gm(1 + δ) < 0. But gm(z) increases from gm(1) to zero as z goes from 1 to
∞. Therefore, (5.14) describes a monotonic curve δb = δ(z) along which our solution
blows up. As the solution diverges and our model breaks down, we see that we should
include other effects into our model, such as the neglected plasticity and diffusion
effects. We shall perform numerical calculations of the system where (2.16) replaces
(3.1) in section 6; some remarks on asymptotic results are given in section 7.

In our special case given by (3.17) and (4.38), we have

θ̂0 =
{
z1−p/m − 1 + [1 + εe−(x/ε)2

]1−p/m
}m/(m−p)

,(5.15)

∂v

∂x
=

vi
zp/m

{
z1−p/m − 1 + [1 + εe−(x/ε)2

]1−p/m
}p/(m−p)

,(5.16)

where z is again given by (3.18). In section 6 we shall compare the solutions given by
(5.15), (5.16), (4.39), and (4.40) to those obtained by numerical results.

6. Numerical results. In this section we describe the results of our computa-
tions of the system of equations formulated in section 2, given by (2.15)–(2.19), (2.22),
(2.23), and (2.25) with g′(θ) = θ2, vi = 1, θi(x) = 1 + ε exp(−(x/ε)2), and α2 = 1.
We note that we will numerically solve the system with (2.16), not (3.1). However,
for detailed comparisons with the asymptotics we shall set λ = 0.

For the computations, we use a finite-difference method that is a modification of
the one described in [10]. The spatial and temporal derivatives are all approximated
by centered differences, so we obtain second-order accuracy. Since the method is
implicit, we use a fixed-point iteration to solve the system of nonlinear equations that
arise at each time step. Automatic mesh refinement is implemented in the code to
handle the narrowing of the shear band and the extreme behavior of the strain rate
and temperature.

The numerical method consists of two nonlinear equations which are discretiza-
tions of (2.15) and (2.16) for the nth time step from tn to tn+1 of width ∆t. Velocity
and temperature are the unknowns; the stress is eliminated using a discrete version
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of (2.17). We discretize the nonlinear term in (2.17) using the following nonlinear
difference:

1

g′(θ(·, t+ ∆t/2))
∼= U(θ(·, t+ ∆t))− U(θ(·, t))

θ(·, t+ ∆t)− θ(·, t) ,(6.1)

where

U(θ) =

∫ θ

0

dφ

g′(φ)
.(6.2)

This form is motivated by the fact that for a similar system exhibiting blowup in finite
time, French [10] has proven that such a discretization leads to numerical solutions
that mimic the blowup of the true solution.

An iteration scheme is needed to solve the nonlinear equations for the velocity
and temperature on time level tn+1. We use the following extrapolations to linearize
the nonlinear equations:

vE(·, tn+1) = v(·, tn) + ∆t

[
v(·, tn)− v(·, tn−1)

∆t

]
,(6.3)

θE(·, tn+1) = θ(·, tn) + ∆t

[
θ(·, tn)− θ(·, tn−1)

∆t

]
.(6.4)

The momentum balance equation (2.15) with the extrapolations, before applying the
centered-difference discretization, has the form

∂v

∂t
= α1

∂

∂x

[
1

g′(θE)

(∣∣∣∣∂vE∂x
∣∣∣∣+ d

)m−1
∂v

∂x

]
.(6.5)

The constant d is the unit roundoff and is used to regularize the factor |∂v/∂x|m−1

in regions where v is nearly constant. The regularization in (6.5) is similar to the
constitutive law in Glimm, Plohr, and Sharp [12]; the major difference is that the
stress in (6.5) is zero when ∂v/∂x = 0, whereas the stress in [12] is never zero.

Upon discretization, we obtain a linear tridiagonal system of equations for v. The
solution for v found above is then substituted in the energy balance equation (2.16),
giving a nonlinear equation in the unknown θ(·, tn+1) only. We solve the resulting
equation using Newton’s method, yielding a tridiagonal system of equations. The
extrapolation θE is used as an initial guess, and one step of the Newton iteration
is performed. At this point, approximations for both v and θ on the n + 1st time
level have been produced. Using these approximations as the new extrapolations, the
entire iteration process is repeated until the difference between successive iterates is
sufficiently small.

The automatic mesh refinement is based on the requirement that there are suf-
ficiently many spatial grid points to resolve the steep velocity gradient. To resolve
the strain rate adequately, we designed a grid refinement strategy so that there are
always three or four grid points across the region of steep gradient. Since the height
of this steep “jump” in the dimensionless velocity is roughly 1, the width of the jump
is approximately (∂v/∂x)−1. Thus, we refine if

∆x ≥
(

4 max
x∈[0,1]

∣∣∣∣∂v∂x
∣∣∣∣)−1

.(6.6)
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Near the shear band, small subintervals are needed to improve accuracy, while away
from the band the solution is smooth and only a coarse mesh is required. Therefore,
we introduce a local mesh refinement in a specified number of subintervals centered
around the jump in velocity. Thus, near x = 0 the mesh becomes quite refined as
multiple refinement steps are taken, while far from x = 0 there is little or no mesh
refinement.

To test whether the time steps are sufficiently small, we examine the following
integral identity at the point where the temperature is a maximum:

θ(·, tn) =

[
θ(·, tn−1)−(p/m−1) − λ

(
p−m
m

)∫ tn

tn−1

θ−p/mσ1+1/mdτ

]−1/(p/m−1)

≡ ψn(θ, σ).(6.7)

This identity can be derived for the true solution and is used as follows. Once an ap-
proximation to the true solution is found at time tn+1 solving the nonlinear equations
on the nth time step, we evaluate ψn using the approximations. We then compute the
error |ψn − θ| at the point x where the approximate strain rate and temperature are
at their maxima (x = 0 in the computations described in this section). If the error
is greater than some predefined tolerance, the time step is shortened and the current
approximation is recomputed.

In the accompanying figures, we first show the behavior of the regular perturbation
solution formulae (4.39) and (4.40) and the uniform or blowup solution formulae (5.15)
and (5.16) in comparison with the solutions computed by the finite-difference method
described. Since we are comparing with the asymptotics, here we take λ = 0, which
corresponds to the absence of heat conduction. We expect singular solutions because
there is no unloading. We also show that the strain rate undergoes, at its maximum
in x, a rapid growth which is possibly finite-time blowup.

The first graphs (Figures 6.1–6.5) show the highlights of the computation with
parameters ε = 0.01, α1 = 23640, m = 0.3, and t ∈ [0, 1.22]. We used an initial time
step of ∆t = .001 and an initial mesh of 500 subintervals. In the interpretation of these
plots, we implicitly assume that the finite-difference approximation is considerably
more accurate than the asymptotic formulas. Although this has not been proved
rigorously for this case, it is known in a slightly simpler situation that the numerical
solutions will be accurate as long as the true (continuous) solution is reasonably
smooth (see French and Garcia [11]).

Figures 6.1 and 6.2 provide a comparison among the computed, regular asymp-
totic, and uniform asymptotic solutions for the temperature and strain rate at t =
0.12. The figures show that both the regular and uniform expansions are good ap-
proximations to the true solution, at least for “short” times.

Figures 6.3 and 6.4 provide the same comparisons at t = 1.096. We see that,
as expected, for larger times the regular perturbation does not track as well as the
uniform one does. Though we have imposed the symmetry condition (2.25), we note in
the immediate neighborhood of x = 0, the temperature gradient θx is large. (In fact,
θx decreases quickly to zero over a few grid points.) It is this near-discontinuous peak
in θ that has motivated some authors to idealize the shear band as an inhomogeneity
in the heat flux [8].

Figure 6.5 shows a comparison of the accuracy of the regular and uniform asymp-
totic expansions for the temperature as time progresses. The error plotted is the
maximum relative error in the asymptotic expansion, which for this run always oc-
curred at x = 0. The figure provides more evidence of the improved accuracy of the
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Fig. 6.1. Comparison of computed, regular, and uniform approximations of θ vs. x for ε = 0.01,
α1 = 23640, λ = 0, m = 0.3, and t = 0.12.
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Fig. 6.2. Comparison of computed, regular, and uniform approximations of ∂v/∂x vs. x for
ε = 0.01, α1 = 23640, λ = 0, m = 0.3, and t = 0.12.

uniform expansion. However, once the strain rate begins to blow up, the uniform
expansion starts to fail.

Figures 6.6–6.9 display the results of a computation that includes heat conduction
and has α1 = 2.364, which corresponds to an extremely high characteristic strain rate.
There may be some debate about the utility of the rigid/plastic approximation at such
high strain rates. However, we follow the work of Wright and Walter, where they use
the rigid/plastic approximation even at strain rates up to 5 × 104 s−1 [20], [24]. In
Figure 6.6 we also include a plot that indicates the blowup behavior when λ = 0.

The initial amplitude of the perturbation is set to ε = 0.1. In addition, we set
m = 0.3 and λ = 2.38 × 10−5 in the heat conduction case. The mesh- and time-
step refinement attributes of the numerical method are used to track the extreme
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Fig. 6.3. Comparison of computed, regular, and uniform approximations of θ vs. x for ε = 0.01,
α1 = 23640, λ = 0, m = 0.3, and t = 1.096.
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Fig. 6.4. Comparison of computed, regular, and uniform approximations of ∂v/∂x vs. x for
ε = 0.01, α1 = 23640, λ = 0, m = 0.3, and t = 1.096.

behavior of the strain rate and temperature. The mesh was refined many times once
the severe localization process began. Initially, there were 250 subintervals, but when
the computation stopped, there were 1510 intervals in the λ = 0 case and 628 intervals
in the diffusion case. The time step was also reduced several times—initially it was
0.01, but when the computation stopped, it was 2 × 10−5 in the λ = 0 case and
2.5× 10−3 in the diffusion case.

Figure 6.6 shows a plot of the maximum of the strain rate vs. t for the simplified
model with λ = 0 and the full model with λ 6= 0. This plot provides strong evidence
for finite-time blowup of the strain rate in the simplified model and that the simplified
model is a good approximation of the more realistic model with diffusion. Also note
that when heat conduction is included, not only does the strain rate not diverge, it
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Fig. 6.5. Comparison of the log of the relative errors in the approximation by the regular and
uniform asymptotic expansions of θ vs. t for ε = 0.01, λ = 0, m = 0.3, and α1 = 23640.
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Fig. 6.6. Computed strain rate maximums for cases with and without heat conduction (diffu-
sion) plotted vs. time on a log/lin scale for ε = 0.1 and α1 = 2.364.

actually decreases after a certain period of time. This type of behavior is also seen in
[4] and [13].

Figures 6.7–6.9 show the velocity, temperature, and stress functions plotted vs.
x for the times shown in the diffusion case. In Figure 6.7 we see a shock structure
forming for the velocity (the t = 1.50, t = 2.00, and t = 2.50 curves are on top of
each other). At first, it evolves to a step function (the shock does widen slightly after
the initial formation as in [13]). This is consistent with our physical understanding
of the severe deformations associated with shear bands. Furthermore, Glimm, Plohr,
and Sharp [12] have used a discontinuous velocity as an idealization of a shear band.
We also note that this long-time step-function behavior is inconsistent with the outer
solution (3.11). Therefore, our inner asymptotic expansions will certainly fail, since
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Fig. 6.7. Computed v vs. x for ε = 0.1, α1 = 2.364, λ = 2.38× 10−5, and t = 0.50, 1.00, 1.50,
2.00, and 2.50.
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Fig. 6.8. Computed θ vs. x for ε = 0.1, α1 = 2.364, λ = 2.38× 10−5, and t = 0.50, 1.00, 1.50,
2.00, and 2.50.

they are matching to an incorrect solution as ξ →∞.

Figure 6.8 displays the growth of temperature in the center of the band as time
progresses. The profiles are much smoother than in the previous case due to the
presence of heat conduction, and they widen as a result of the same physical effect.

Figure 6.9 shows the stress weakening near the location of the imperfection. This
weakening occurs only at very high strain rates [24]. We note that during this time
interval and for this choice of α1, the computed stress is not constant in the “outer”
region away from the shear band. However, throughout our asymptotic analysis our
solutions always had constant stress in the outer region to leading order. Therefore,
we would expect that our asymptotic solutions would not be as accurate for small α1,
and this is indeed the case. (In fact, our leading-order asymptotic solutions do not
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Fig. 6.9. Computed σ vs. x for ε = 0.1, α1 = 2.364, λ = 2.38× 10−5, and t = 0.50, 1.00, 1.50,
2.00, and 2.50.

even involve α1.) The reason for this discrepancy can be found in (2.15). Figure 6.9
also shows that in the later stages of the computation the stress does become constant
once the unloading stage begins.

We note that when considering the full equation, a large α1 would force the stress
to remain nearly constant regardless of the initial data. This is not the case for small
α1, and indeed when the strain rate is low, one sees nearly constant stress profiles [24].

7. Remarks on asymptotics with diffusion. To include the effects of diffu-
sion, we redefine our parameter λ as λ0ε

2, where λ0 = O(1). Then the width of our
perturbation given by (3.1) will indeed be of the correct diffusion scale. In this case,
most of our analyses in sections 3–5 still hold, with the following exceptions.

Equation (2.16) becomes

∂θ

∂t
= λ0ε

2 ∂
2θ

∂x2
+ α2σ

∂v

∂x
,(7.1)

which causes (4.3) to become

∂θ̂

∂t
= λ0

∂2θ̂

∂ξ2
+
α2

ε
σ̂
∂v̂

∂ξ
.(7.2)

Even though the dominant balance in (7.2) contains an additional term, since z(t)
depends only on time, the diffusion term vanishes and z(t) satisfies (7.2). Therefore,
our previous work in section 4 holds with (4.12) replaced by

ε
∂θ̂1

∂t
= ε

(
λ0
∂2θ̂1

∂ξ2
+ α2σ0

∂v̂2

∂ξ
+ α2viσ̂1

)
.(7.3)

We again see that an initial layer is necessary. Equation (4.22) is replaced with

ε−1 ∂Θ

∂η
= λ0ε

∂2Θ

∂ξ2
+ α2Σ

(
vi + ε

∂V

∂ξ

)
,(7.4)
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which does not affect the analysis in that section either. However, upon returning
back to our regular layer expansions, we see that by substituting our expression for
σ̂1 into (7.3), we obtain the partial differential equation

1

[g′(z)]1/m
∂θ̂1

∂t
−
{

1

m

g′′(z)
[g′(z)]1/m+1

dz

dt

}
θ̂1 =

λ0

[g′(z)]1/m
∂2θ̂1

∂ξ2
,(7.5)

which does not have the simple solution (4.34). However, we may solve (7.5) subject
to our initial and boundary data (4.14) and (4.15). The solution is

θ̂1(ξ, t) =
g′(z)1/m

2
√
λ0πt

∫ ∞
0

f ′(φ)

{
exp

[
− (ξ − φ)2

4λ0t

]
+ exp

[
− (ξ + φ)2

4λ0t

]}
dφ.(7.6)

Our uniform solution is again given by our inner solution.
In the special case given by (3.17) and (4.38), the temperature given by

θ(x, t) = z +
εzp/m√
4λ0t+ 1

exp

[
− x2

ε2(4λ0t+ 1)

]
.(7.7)

Note that (7.7) reduces to (4.39) in the limit that λ0 → 0.
There are several significant differences between (4.39) and (7.7). First, since

diffusion now plays a role, our perturbation is smoothed out and becomes uniform in
space as t→∞. This is consistent with the shear-band widening seen in DiLellio and
Olmstead [7]. Due to the nature of the heat conduction operator, (7.7) has a term in
it which decays like t−1/2 for large time. However, since m is still small, we see that
the solution resulting from our small perturbation still grows. Indeed, as before, the
O(ε) term still grows faster than the O(1) solution.

Replicating the analysis in section 5 while including the heat conduction term,
we see that the analogue of (5.9) is

∂θ̂0

∂t
= λ0

∂2θ̂0

∂ξ2
+

[g′(θ̂0)]1/m

[g′(z)]1/m
dz

dt
.(7.8)

The perturbation analysis of (7.8) is quite difficult and beyond the scope of this paper.
However, we use some heuristic arguments to indicate that (7.8) will lead to bounded
solutions.

As θ̂0 grows larger and larger, so too will the stress term in (7.8), which is the
second term on the right-hand side. As seen previously, in the absence of diffusion,
this growth will occur in a narrow range. This growth in a narrow region will increase
the size of the second-derivative term in (7.8), causing a dominant balance between the
two terms on the right-hand side. Thus, the left-hand side of (7.8) may be neglected,
consistent with the arguments in [12]. Since the stress term is always positive, we
see that wherever we neglect the left-hand side of (7.8), the temperature is positive
and concave down, which implies that there must be a maximum somewhere in that
region.

8. Conclusions. The general model for shear bands presented in [4], [24], and
elsewhere contains significant computational difficulties. However, simplified models
hold the promise of obtaining qualitative agreement with experiments while being
easier to solve. Therefore, we considered the case of a very high elastic shear modulus,
which meant that the strain rate was equal to the velocity gradient. This rigid/plastic
approximation has been used extensively (for instance, see [8], [12], [15], [20], and [24]).
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In order to obtain asymptotic results, we began by neglecting heat conduction.
Once a regular perturbation expansion was constructed for the case at hand, we saw
that with the passage of time, the terms assumed to be small in the expansion came
to dominate the “larger” terms. This caused the expansion to be suspect, and indeed
when we compared the solutions constructed from the regular perturbation expansion
to those calculated numerically, we saw that their validity was limited to very small
times.

Since the regular perturbation expansion was of limited value, we next constructed
a uniformly valid expansion by considering our perturbation to be of finite height. The
resulting expression diverged at a finite time. Though the model without diffusion
replicates the short-time evolution of the shear band well, the divergence of the solu-
tion is not physical. Since the model does not incorporate any way for the temperature
profile to unload the heat generated by the plastic work term, the profile diverges,
rather than spreading out as seen experimentally.

Even when the regularizing phenomenon of diffusion is included, the system is
difficult to solve numerically. The shear band narrows severely and the strain rate
becomes quite large on a short time scale. These phenomena require an algorithm
with mesh- and time-step refinement capabilities. The numerical method we used
appears to be effective at capturing the blowup behavior of the strain rate function
in the model without diffusion. The numerical solutions show good agreement with
the asymptotic ones.

Of course, once we include diffusion, the blowup is eliminated, as in [10]. The
strain rate maximum at the center of the band peaks and then decays, as in [4]. We
also note that the shear band begins to widen after a certain period, as in [7].

One can quite easily construct a regular perturbation expansion for the system
with diffusion included. Since the second term in the expansion grows in an unac-
ceptable manner, a uniformly valid approach is warranted. Though a complicated
nonlinear partial differential equation results, through heuristic arguments it can be
shown that the asympotic solution for the temperature (and hence the strain rate)
will have maxima and hence remain bounded.

Though the model equations we have solved are simplified and do not capture the
dynamics in all their generality, we were able to construct both asymptotic and nu-
merical solutions which demonstrated good qualitative agreement with the physically
observed phenomena. These results indicate that our methods hold great promise for
more complicated models.

Appendix. Values of material parameters. With the laudable exceptions
of [20] and [22], few papers in this field indicate the values of the actual physical
parameters used to construct dimensionless parameters. We present a summary of
some typical physical parameters below, as well as references where more detailed
information may be found. Our motivation is threefold. First, we wish to run our
numerical computations with reasonable values of our dimensionless parameters. Sec-
ond, we wish to gain insight for how changes in the physical parameters would affect
the mathematical formulation of our system. Last, we wish to see what changes in
the physical parameters are plausible. For instance, a 1000-fold change in the strain
rate is plausible, while a 1000-fold change in the yield stress is not.

Table A.1 indicates the values of several material parameters as tabulated in the
listed references, as well as the value we used when calculating values of parameters
for this paper.

For the characteristic strain rate γ̇c, we can use the nominal strain rate used for
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Table A.1
Typical values of some material parameters. Calculated values are marked with asterisks.

k κ ρ Cp m
Reference kg ·m/(s3 ·K) 108 kg/(m · s2) kg/m3 m2/(s2 ·K)

[17, Table 23-8] 48.46 502
[17, Table 23-7] 6.3 (avg. tensile)

3.93 (avg. yield) 7750
[20] 49.2 6.02 7860 473 0.0251
[21] 65
[22] 46.7 5
[23] 5 7800 500 0.022
[24] 6528∗ 544∗ 0.022

Used 53.5 5.08 7139 523

the numerical calculations in Wright and Walter [24], which was 500 s−1. Wright [22]
uses a strain rate of 1000 s−1. The maximal value of the strain rate used by Wright
and Walter [24] was 50000 s−1. It is this value of the strain rate that led to sharp
profiles and quick uptake times. We shall consider both extremes.

For a typical length scale, Wright [22] uses a value for d which doesn’t reflect a
true thickness. Glimm, Plohr, and Sharp [12], [13] and Walter [20] use a half-width
of 3.47 mm, and it is this value which we shall use.

Wright [22] uses a characteristic temperature of θc = 300 K. In Wright and Walter
[24], the characteristic temperature can be computed from the other parameters in the
paper, yielding θc = 164 K. The small size of this characteristic temperature is not of
concern since this has no direct relationship to the initial temperature distribution.
Therefore, we use the value in Wright [22].

In order to calculate the elastic shear modulus µ, we begin by obtaining values
of the regular elastic modulus. Perry and Green [17, Table 6-41] and the CRC [21,
p. D-184] both give values of 2 × 1011 kg/(m · s2). Using the rule of thumb given in
Kutz [14], which says that the shear modulus is usually about 0.4, the elastic modulus
for metals, we obtain µ = 8× 1010 kg/(m · s2). The same value is also given in Batra
[2], Smith [18, pp. 19–20], and Walter [20].

Using the parameters noted above, we see that the parameter in the stress evo-
lution equation is given by κ/µ = 6.25× 10−3. Since this quantity is quite small, it is
reasonable to take it equal to zero, as we did in section 2. In addition, λ is given by

2.38× 10−5 ≤ λ ≤ 2.38× 10−3,(A.1)

depending on the value of the strain rate we use.

We see that α1 is in the range given by

2.364 ≤ α1 ≤ 2.364× 104,(A.2)

depending on the value of the strain rate we use. If we use the largest strain rate in
[24], we obtain the lower bound. However, if we use more physically attainable strain
rates, α1 approaches the upper bound. Therefore, we see that our analysis in section
6 holds. With our chosen parameters, we have α2 = 0.454, and this term must be
retained in the analysis.
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Nomenclature.

Variables and parameters. Units are listed in terms of length (L), mass (M),
time (T ), or temperature (Θ). If the same letter appears both with and without
a tilde, the letter with a tilde has dimensions, while the letter without a tilde is
dimensionless. If the same letter appears in boldface and italics, the boldface letter
is a vector of which the italic letter is a component. The equation where a quantity
first appears is listed, if appropriate.

C: 4-tensor of elastic moduli, units M/T 2L (2.3).
Cp: heat capacity at constant pressure per unit mass, units L2/T 2Θ (2.2).
D: diffusion coefficient in short-time equation, value α1mv

m−1
i (4.30).

d: double-precision roundoff error (6.5).
f(·): function characterizing the perturbation in the temperature (3.2).
g̃′(θ̃): stress-hardening function, units T−m (2.7).
H: thickness of the solid, units L.

h(ξ, η): displacement variable in short-time evolution equation (4.29).
k: thermal conductivity, units ML/T 3Θ (2.2).
m: exponent in Ostwald-de Waele stress-strain model (2.7).
n: indexing variable (6.3).
p: exponent in stress-hardening model (3.17).
t̃: dimensional time, units T (2.1).

U(θ): integral quantity used in numerical scheme (6.2).
V (ξ, η): short-time solution for velocity (4.19).

ṽ: velocity, units L/T (2.1).
w: velocity derivative (5.3).
x̃: dimensional measure of length along the sample, units L (2.4).
ỹ: dimensional measure of length in the direction of shear, units L (2.4).
Z: the integers.
z: leading-order outer solution for temperature; also treated as an independent

variable (3.3).
α: coefficient in dimensionless system (2.18).
β: dimensionless parameter, value (p+ 1)α2v

m+1
i (3.18).

˙̃Γp: rate of plastic strain tensor, units T−1 (2.2).
γ̇: rate of plastic strain (2.12).
δ: dimensionless parameter used to represent larger perturbations, usually taken

to be εf ′(ξ) (5.2).
ε: small dimensionless parameter characterizing the spatial inhomogeneity of

the perturbation, also used in perturbation expansions (3.2).
η: short-time variable, defined as tε−2 (4.19).

Θ(ξ, η): short-time solution for velocity (4.19).
θ̃: temperature, units Θ (2.2).
κ: stress-hardening coefficient, units M/T 2L (2.7).
λ: coefficient of thermal diffusion term in dimensionless heat equation (2.18).
µ: elastic shear modulus, units M/T 2L (2.6).
ξ: boundary-layer variable, defined as xε−1 (4.1).
ρ: density, units M/L3 (2.1).

Σ(ξ, η): dimensionless stress in short-time region (4.19).
σ: dimensionless stress (2.13).
τ̃ : stress tensor, units M/T 2L (2.1).
φ: dummy variable, variously defined (4.32).
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ψ: expression in integral identity (6.7) used in numerical method.

Other notation.

b: as a subscript, used to indicate the curve δ(z) along which the solution blows
up.

c: as a subscript, used to indicate the characteristic value of a quantity (2.12).
E: as a superscript, used to indicate an extrapolated quantity (6.3).
i: as a subscript, used to indicate the initial state of a quantity (2.9).

j ∈ Z: as a subscript, used to itemize α (2.16), to indicate a term in an expansion
(3.3), or to index time (6.3).

p: as a subscript, used to indicate the plastic strain rate (2.2).
x̃: as a subscript, used to indicate a component in the x̃ direction (2.4).
ỹ: as a subscript, used to indicate a component in the ỹ direction (2.4).
ˆ : used to denote a variable in the boundary layer (4.1).
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