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During the desorption of certain saturated polymer films, a thin skin of glassy polymer can form 
at the exposed surface. Not only does this inhibit desorption, but also trapping skinning, in 
which an increase in the desorption driving force decreases the accumulated flux, can occur. 
These behaviors cannot be described by a simple Fickian flux. A theoretical framework is 
presented for modeling such a system. It is shown that though increasing the driving force will 
increase the instantaneous flux, the time of accumulation will decrease, thus reducing the 
accumulated flux. In addition, the model is shown to exhibit sharp fronts moving initially with 
constant speed, another distinctive feature of non-Fickian polymer-penetrant systems. 

Keywords: Desorption; non-Fickian diffusion; polymer-penetrant systems; skinning; trapping 
skinning 

INTRODUCTION 

One unusual feature of certain polymer-penetrant systems is a change of 
state in the polymer from a rubbery state when the polymer is nearly 
saturated to a glassy state when the polymer is nearly dry. During the 
desorption of such a saturated film or fiber, often a glassy region, or skin, 
develops at  the exposed surface. Since the polymer is now in two states - 
the glassy skin and the deeper rubbery material - this phenomenon is called 
literal skinning (Cairncross and Durning, 1996; Cairncross e t  al. ,  1992; 
Crank, 1950; Crank and Park, 1951). Due to the smaller diffusion coefficient 
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in the glassy region, this skin will slow the desorption process (Powers and 
Collier, 1990). 

This glassy skin can be used as a natural barrier to create more effective 
protective clothing, equipment, or sealants (Vieth, 1991; Vrentas et al., 
1975). Also, this skinning phenomenon can be desirable for such processes 
as membrane production by phase inversion (Anderson and Ullman, 1973) 
or spray drying operations (Charlesworth and Marshall, 1960). However, 
polymer skinning is generally undesirable in coating processes due to 
nonuniformities in the polymer coating and a decrease in drying rates 
(Cairncross and Durning, 1996). 

Trapping skinning is an anomalous special case of the skinning effect in 
which an increase in the force driving the desorption will actually decrease 
the accumulated flux through the boundary (Cairncross and Durning, 1996; 
Powers and Collier, 1990). Crank (1950) and Crank and Park (I95 I) showed 
that this behavior cannot be fully explained by the lower Fickian diffusion 
coefficient in the glassy region. Thus, other effects, such as those due to 
viscoelasticity, must be included. Though the dynamics of these systems are 
incredibly complex, most agree that one dominant factor is a viscoelastic 
stress in the polymer, which is related to the polymer's relaxation time. In 
certain polymer-penetrant systems, this stress is as important to the 
transport process as the well-understood Fickian dynamics (Frisch, 1980). 
In the glassy region, the relaxation time is finite, so the stress is an important 
effect. In the rubbery region, the relaxation time is nearly instantaneous; 
hence, the memory effect is not as important there (Frisch, 1980; Vieth, 1991). 

In this paper, we outline a study of a previously-derived model (for 
instance, see Edwards and Cohen, 1995b, 1995~) to explain this unusual 
behavior. We track two important measurable quantities: the flux of the 
penetrant through the exposed boundary and the dynamics of the front 
separating the glassy and rubbery regions. Each of these quantities is 
identified and related to the dimensionless parameters in the problem. These 
computations should provide useful information to chemical engineers who 
wish to verify our model experimentally and if our model is shown to be 
accurate, to those who wish to accommodate the skinning phenomenon in 
the production process. 

GOVERNING EQUATIONS 

Edwards (1997) presents the following dimensionless model for non-Fickian 
diffusion in a skinning system: 
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c1 = [D(C)Cx + uxl,, x L 0,  

Each of the variables in (1)-(4) has been scaled with respect to physically 
observable lengths and times. The flux, which is the negative of the 
bracketed quantity in (la), arises from postulating that the chemical 
potential depends on both C and the non-state variable u, which models 
memory effects (Edwards and Cohen, 1995b). Since (Ib) is reminiscent of an 
evolution equation for viscoelastic stress, we refer to u as a "stress" 
throughout this work. Equations (1) have been successfully used to model 
various types of anomalous behavior in polymer-penetrant systems (for 
example, see Edwards, 1996). We use a semi-infinite medium since we want 
to avoid considering the effects of swelling on the system. 

P(C), the inverse of the relaxation time, and D(C), the molecular 
diffusion coefficient, have been taken to be piecewise constant. C, is the 
concentration at which the rubber-glass transition occurs. Here E is the ratio 
of the relaxation times, which we shall drive to zero to use as a perturbation 
parameter. As E - 0,  we see that this enhances the difference between the 
two states and hence we would expect to see sharp concentration profiles 
near the glass-rubber interface s(t). In addition, as E+O, large differences 
develop between the values of P and D in the two states. Such large 
differences in D have been seen experimentally (Duda et al., 1982) and have 
been exploited in previous models of the phenomena (Hui et al., 1987b; 
Vieth, 1991). 
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These piecewise-constant forms are obviously idealizations of the true 
parameter dependences and other choices are certainly possible. Many 
authors use exponential dependence of D on C (for example, see 
Petropoulos and Roussis, 1978), though this form does not accurately 
model the inflection points often seen in the diffusion coefficient (Duda et 
al., 1982). Our choice is motivated by the fact that in certain polymer- 
penetrant systems, a severe increase in D is localized about the glass-rubber 
interface where C = C ,  (Frisch, 1964, 1980; Huang and Durning, 1997; Hui 
et al., 1987a, 1987b). In addition, the relaxation time decreases radically at. 
the glass-rubber transition, which causes a corresponding increase in ,O 
(Frisch, 1980; Huang and Durning, 1997; Vieth, 1991). Therefore, we use 
the average of ,O and D in each state as its value throughout the state. This 
averaging, which yields the piecewise-constant form in (2), has produced 
qualitative agreement with several types of anomalous diffusion behavior 
(Edwards and Cohen, 1995a; Hui et al., 1987b; Witelski, 1996). 

Crank (1951, 1953) used such piecewise-constant forms for D to model 
this nonstandard behavior. The use of constant D in the glassy region has 
been shown to provide good qualitative descriptions of the behavior 
(Hopfenberg and Stannett, 1973) and excellent agreement with experimental 
data (Lasky et al., 1988). Experimental agreement has even been obtained 
with a model where D is kept at the same constant value throughout both 
states (Edwards and Cohen, 1995b). Therefore, though the piecewise- 
constant form is only an idealization, we believe the results thus obtained 
have the same qualitative structure as the full physical system. More 
discussion of various physically appropriate forms for D(C) can be found in 
Cohen and White (1989). 

As noted by Crank (1950) and Crank and Park (1951), the lower diffusion 
coefficient in the glassy region is not enough to explain trapping skinning 
and indeed there can be significant diffusion in glassy polymers with a small 
diffusion coefficient (Edwards, 1995; Lasky et al., 1988). Thus, viscoelastic 
relaxation effects must come into play. Wu and Peppas (1993) define the 
integral sorption Deborah number as the ratio of the diffusion rate in the 
rubbery region to the relaxation rate in the glassy region. In our notation, 

where D, is the dimensional molecular diffusion coefficient in the rubbery 
region and L is a typical length scale. Therefore, we choose this 
normalization for the molecular diffusion coefficient to obtain D, = De. 
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Since in our analysis D, = De = O(1) (in fact, the figures illustrate a case 
where D e  = 3), we are in the regime where anomalous diffusion can be 
expected. 

Lastly, we note that the relative sizes of the parameters in Eqs. (1)-(4) 
have been chosen quite carefully. As written, every parameter in (I)-(4) but 
E is an O(1) quantity. These parameter sizes result from scaling the length 
and time variables by quantities associated with the stress in the glassy region 
and from assuming that the C term is dominant in (Ib). Other scalings and 
assumptions lead to different sizes of the parameters, which lead to different 
balances in the equations. These alternative balances lead to more standard 
desorption profiles, lending credence to the theory that trapping skinning is a 
most unusual effect which is difficult to capture experimentally. 

Initially, we set the concentration in the polymer to a uniform value of 1. T o  
ensure that the polymer is initially rubbery, we require that C, < 1. Given 
these conditions, the stress quickly equilibrates to a uniform value of y on a 
fast time scale (Edwards, 1997). The parameter y is a ratio measuring the 
relative contributions of the concentration and time-derivative terms in (I b). 

Equation (3) is the standard radiation condition a t  the exposed edge for 
our augmented flux, where we assume that the exterior concentration is 
zero. Here the parameter k is related to parameters which affect the drying 
rate, such as the airflow rate in the exterior. Generally, k increases with 
conditions that promote drying. From (3) we see that if the boundary is dry 
(i.e., if a skin has formed), then there will be very little flux through the 
boundary and the penetrant will be trapped inside the polymer. We require 
continuity of concentration and stress a t  the moving front s(t) between the 
two states. Equation (4) arises as a result of a Stefan-like condition imposed 
at  the moving boundary (Edwards and Cohen, 1995~). 

Lastly, we define the accumulated~ux F: 

In normal desorption o r  literal skinning, an increase in k would increase F. 
However, in our model we will show that though an increase in k will 
increase the instantaneous flux, it will actually produce a decrease in F. 

THE ACCUMULATED FLUX 

The solutions in Edwards (1997) are based on singular perturbation 
methods using E as the perturbation parameter. Memory effects are not 
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important in the rubbery state and hence the solution in this region is given 
by a standard Fickian-type profile: 

It can also be shown that in this region we have 

The Fickian-type profile continues until the concentration at the exposed 
edge reaches the glass-rubber transition value C., which occurs at  a time 
given by 

nLz* 
ez' erfc JZ; = C,, t* = - 

k2 ' 
(9) 

From (la) and (8) one can see that the parameter n2 combines the 
contributions to the flux from the concentration gradient and stress 
gradient. Note that the time needed to dry the surface to C = C, decreases 
with increasing k, as expected. 

Note from (9) that z, is a function of C, only, as illustrated in Figure 1 .  
The following asymptotic results are of interest: 

2 0- 
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FIGURE l z. vs. C.. 
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Therefore, wesee that'if the glass-rubber transition concentration is near the 
saturation concentration, the polymer will very quickly transition to the 
glassy state. Also, if the glass-rubber transition is far from the saturation 
concentration, we can delay the onset of the glassy state indefinitely. This is 
consistent with our physical intuition for the system. 

Figure 2 shows a graph of C(x) vs. x. The concentration decreases 
monotonically with t, so the line C = 1 corresponds to t = 0 and the graph 
where C(0,t) = 0.5 = C, corresponds to t,, the value of which was 
calculated numerically from (9). Note the standard Fickian profile. In 
addition, note from (8) that for the particular value of y we have chosen, 
Figure 2 is also a graph of a(x). 

In order to track F, we need to examine the concentration profile in the 
glassy region for t > t ,  and near the exposed boundary. We summarize the 
results in Edwards (1997). There is no stress dispersion in the glassy region 
and hence from (8) and continuity of stress at s(t) we have 

Due to the finite relaxation time in the glassy region, we see from (Ib) that 
the concentration must be small: 

It can be seen immediately that (1 Ib) is not C, at the front s(t) and indeed there 
is a sharp interior layer around the front where the solution changes very 
quickly. However, for the purposes of computing F, we need only Eqs. (1 1). 

FIGURE 2 C(x) and 4 x )  vs. x  for C. = 0.5, K = 2, k = 3, y = 1, r.rs0.262 and r = 0, 0.01, 
0.04, 0.16, 0.64 and I.. 
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Substituting (I I) into (6), we see that since E is small, the contribution to F 
from desorption in the rubbery state (0 5 t 5 r , )  dominates that from 
desorption in the glassy state ( t  > r,). Camera-Roda and Sarti (1990) 
obtained a similar result in a case where k+m and the ratio of the 
diffusivities is large. In our model, this result can be interpreted physically by 
examining ( I  b). Due to the finite relaxation time in the glassy polymer, an 
O(I) concentration flux through the boundary would require an O(E-I) 
stress, which is larger than the glassy polymer can support if it is not initially 
prestressed a t  such a high value. 

Since the flux in only the rubbery region contributes to the leading order 
of our solution, we use (7) to obtain 

Equation (12) deserves close scrutiny. An increase in n will increase F, as  it 
should since we are increasing the diffusion coefficient. However, for fixed C,, 
an increase in k, which would normally increase the amount of penetrant 
desorbed, will actually decrease F. This embodies the very essence of trapping 
skinning (Cairncross and Durning, 1996; Powers and Collier, 1990). 

How does this happen? Equation (3) shows that an increase in k will 
increase the instantaneous flux through the boundary. But from (9) we see 
that this increase causes the exterior surface to desorb faster, thus reducing 
the glass-transition time I ,  a t  which our flux accumulation effectively ends. 
Therefore, there is a competition between these two effects, one which the 
shorter accumulation time dominates. 

Lastly we consider the behavior of F as  C, takes on  extremal values. 
Using (lo), we obtain 

Therefore, we see that if the transition concentration is very near the 
saturation concentration, there is little time for the penetrant in the rubbery 
region to diffuse through the exposed surface, and hence F is small. On  the 
other hand, if the transition concentration is low, the polymer is in the 
rubbery region for a long period of time and hence F becomes arbitrarily 
large, which it can d o  since we have an infinite reservoir of penetrant. 
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THE FRONT POSITION 

The perturbation analysis needed to complete the solution of our problem is 
rather detailed and has been described elsewhere (Edwards, 1997). Here we 
wish to expand upon the physical significance of the major results. As noted 
earlier, our solution given by (I lb) does not match one of our conditions at 
the front. An interior layer of width E must be introduced to match the two 
solutions together. Therefore, as surmised earlier, smaller values of E cause 
sharper interfaces. 

once we have introduced this layer, (4) becomes 

which, along with the form of the concentration in the rubbery region, 
implies that 

This requirement indicates that a cannot be interpreted in terms of the latent 
heat, since in this case the phase change parameter is negative. However, a 
restriction of the form of (14) is not uncommon for the model Eqs. (1) 
(Edwards and Cohen, 1995b). Since the stress term in the flux acts to oppose 
front motion, we see that it is the difference of the two competing effects 
which is critical to the dynamics of the front. Therefore, we see that it is 
reasonable to assume that a could be of either sign, depending on the 
relative strengths of the viscoelastic and Fickian effects in a particular 
system. 

To calculate the front motion, we must compute the solution in the 
rubbery region for t > t , .  The calculation involves a set of integral equations 
which can be solved asymptotically for t near t ,  and for large t (Edwards, 
1997). Performing the asymptotics, we see that the front position is given by 

where s, is given by the root of the equation 

1 - C,[1 - s,(erfc s,) exp(?,)&] = lals,(erfc s,) exp(?,)&. (17) 
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We note that s, does not depend on k. This is consistent with the 
observation that in a system of finite width, the steady-state skin depth does 
not depend appreciably on k (Anderson and Ullman, 1973). 

Sonie discussion of the dependence of s, on our parameters is 
appropriate. It can be shown that as C,  gets smaller, s, gets smaller. This 
agrees with our intuition, as we expect that the front would slow as the 
rubber-glass transition value decreases. In addition, as a increases, the front 
speed increases. This is because the absolute value of the jump in the flux 
needed to move the front along is decreasing and hence the front should 
move faster. 

Figure 3 shows a graph of the short- and long-time expansions of our 
front position s(t) in the x-t plane. In addition, there is a darker curve which 
interpolates between the two asymptotic expansions to show how the true 
front might behave. Note that the front slows as time increases. 

SOLUTION PROFILES 

Explicit closed-form long- and short-time asymptotic solutions for the 
concentration and stress can be found in Edwards (1997). However, it is 
perhaps more instructive to glean physical insight from graphs of our 
solution profiles. 

Figure 4 shows a graph of C(x) vs. x for t near t, and various parameters; 
note that (14) is satisfied. On a relatively fast time scale (note that our largest 
t = I ,  + 0.1), the concentration in the glassy region decays away. This is the 

FIGURE 3 Short- and long-time asymptotes for s(r) for C. = 0.5, a = - 2, D, = 2, E = 0.01, 
n = 2, k = 3, y = l and r. ~ 0 . 2 6 2 .  
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FIGURE 4 C(x) vs. x for C. = 0.5, a = -2 ,  D, = 2! E = 0.01, K = 2, k = 3.7 = 1 ,  r.eO.262 
and 1 - 1 .  = 0, 0.003, 0.007, 0.015, 0.04 and 0.1. 

mathematical manifestation of the formation of the glassy skin near the 
exposed surface. Note also that due to the small scale in the x-direction, our 
front is very sharp. This is more apparent in Figure 5, which shows a graph 
of C(x) vs. x for the same parameters as graphed earlier and for long times. 
It is clear that the concentration flux through the exposed boundary is zero 
to the order of our approximation. 

In addition, we can use (8) and ( I  la) to yield graphs of the stress for 
small and large times. Figure 6 shows a(x) vs. x for the same parameters and 
times as in Figure 4. We note that rather than decaying to zero as the 

FIGURE5 C ( x ) v s . x f o r C . = 0 . 5 , a = - 2 , D , = 2 , ~ = 0 . 0 1 , ~ = 2 , k = 3 , y = 1 a n d r = 5 0 ,  
250, 1250, 6250 and 31250. 
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FIGURE 6 o(x) vs. x for C. = 0.5, a = - 2, D, = 2, E = 0.01, tc = 2, k = 3, y = I ,  1 . ~ 0 . 2 6 2  
and r -  r.=u = 0, 0.003, 0.007, 0.015, 0.04 and 0.1. 

concentration did, the stress in the glassy region remains at a constant value 
y before making a smooth transition to the rubbery region. Figure 7 shows a 
graph of u(x) vs. x for the same times and parameters as in Figure 5. We 
once again note that the rubbery portion of the graph is the same as that for 
the concentration since y = 1. We see that the stress in the glassy region 
remains at  a constant value, which smoothly transitions in a Fickian way to 
the fully stressed polymer when x+w. 

FIGURE7 o ( x ) v s . x f o r C . = 0 . 5 , a = - 2 , D g = 2 , ~ = 0 . 0 1 , ~ = 2 , k = 3 , y = I a n d t = 5 0 ,  
250, 1250, 6250 and 31250. 
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CONCLUSIONS 

Trapping skinning is a counterintuitive phenomenon: an increase in k, which 
usually increases the total driving force for desorption, will actually decrease 
the amount of penetrant desorbed. A glassy skin forms at the exposed 
surface; such a skin slows desorption since the molecular diffusion 
coefficient is smaller there (Cairncross and Durning, 1996; Cairncross 
et al., 1992; Powers and Collier, 1990). However, the lower diffusion coeffi- 
cient cannot fully explain such behavior; rather, nonlinear viscoelastic 
effects must also be considered (Cairncross and Durning, 1996; Crank, 1950; 
Powers and Collier, 1990). 

A mathematical model was presented to capture this behavior. Though 
the model necessarily simplified the complicated dynamics of the full system, 
the solutions thus obtained did qualitatively match the phenomenon of 
trapping skinning. Since the polymer is initially saturated, for a finite 
amount of time the polymer remains totally in the rubbery state. Because 
memory effects are unimportant in the rubbery state (Vieth, 1991), the 
concentration flux during this interval behaves in a purely Fickian way. 

Once the concentration at the boundary reaches C., the glass-rubber 
transition concentration, the character of the solution changes drastically. 
An interior layer around x = s(t) forms a sharp interface between the 
rubbery and glassy regions. This sharp front initially moves with constant 
speed: behavior which is reminiscent of case I1 diffusion in sorption 
experiments (Thomas and Windle, 1978). Thus, we see that in this interval, 
Fickian dynamics are subdominant. 

To determine whether or not there is trapping skinning, we examine the 
accumulated flux F through the boundary. Since the concentration in the 
glassy polymer is nearly zero, the dominant contribution to F is from the 
rubbery region. As expected, the instantaneous flux through the boundary 
increases when k, which is related to the drying rate, is increased. However, 
the length of the interval during which there is a measurable contribution 
to F decreases with increasing k. This duration effect is stronger and hence 
we see that the overall accumulated flux decreases with k. Therefore, the 
solutions presented replicate well the salient features of trapping skinning. 
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NOMENCLATURE 

The equation number where a particular quantity first appears is listed. 
Quantities with tildes have dimensions; other quantities are dimensionless. 

Roman Letters 

Coefficient in flux-front speed relationship (4) 
Concentration of penetrant a t  position x and time t ( la)  
Binary diffusion coefficient for system (la) 
Integral sorption Deborah number for system, value D, (5) 
Accumulated flux through the boundary (6 )  
Parameter describing the permeability of the exposed surface (3) 
Typical length scale (5) 
Position of glass-rubber interface, defined as  C(s(t), t) = C, (4) 
Time from beginning of experiment (la) 
Distance from boundary (la) 
Scaled time variable, value k2t/n2 (9) 

Greek Letters 

p (C) Inverse of the relaxation time (1 b) 
Y Parameter in stress evolution equation (Ib) 
E Perturbation expansion parameter, value &/ Pr (Ib) 
n Parameter, value (7) 
a(x, t) Stress in polymer a t  position x and time t ( la)  

Other Notation 

g As a subscript, used to indicate the glassy state (lb) 
r As a subscript, used to indicate the rubbery state (2a) 
* As a subscript, used to indicate a quantity a t  the transition value 

between the glassy and rubbery states (2a) 
Used to indicate differentiation with respect to t (4) 

w As a subscript, used to indicate a term in an expansion for large 
t (16) 
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