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AN UNUSUAL MOVING BOUNDARY CONDITION ARISING IN
ANOMALOUS DIFFUSION PROBLEMS�

D� A� EDWARDSy AND D� S� COHENz

Abstract� In the context of analyzing a new model for nonlinear di�usion in polymers� an
unusual condition appears at the moving interface between the glassy and rubbery phases of the
polymer� This condition� which arises from the inclusion of a viscoelastic memory term in our
equations� has received very little attention in the mathematical literature� Due to the unusual form
of the moving�boundary condition� further study is needed as to the existence and uniqueness of
solutions satisfying such a condition� The moving boundary condition which results is not solvable
by similarity solutions� but can be solved by integral equation techniques� A solution process is
outlined to illustrate the unusual nature of the condition� the pro�les which result are characteristic
of a dissolving polymer�
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�� Introduction� In recent years� engineers and scientists have found a panoply
of uses for polymers and other synthetic materials� These new materials promise to
revolutionize entire industries and create new ones� The sudden explosion in the devel�
opment of these materials has thrust materials science to the forefront of mathematical
applications� especially since there is so little mathematical modeling of the dynamics
of synthetic materials� Mathematicians are also handicapped by the debate raging
among chemical engineers and materials scientists as to the exact physical mecha�
nisms involved� However� all agree that the unusual behavior exhibited by these new
materials indicates that the standard Fickian �ux J � �D�C�rC� where D�C� is
the second�order di�usion tensor and C is the concentration� is not general enough to
model the desired behavior accurately� It is also a growing consensus that some sort
of viscoelastic stress plays a major role in di�usion in many of these materials� sharing
dominance with molecular di�usion�

The promise that these new types of materials hold is astounding� New types
of adhesives will adhere more while weighing less �	
� ��
� �Smart
 polymer gels will
forever change how doctors administer medicine� as they abandon standard global
delivery methods in favor of internal or external on�site administrations ��
���
� Mi�
crolithographic patterning using polymer substrates has emerged as a major technol�
ogy ��
� Polymer �lms have great value in protective clothing� equipment� or sealants
��
�
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Polymer�penetrant systems are particularly interesting since much of the observed
behavior is inconsistent with a purely Fickian di�usion model� In particular� unless
pathological conditions are met� the moving Fickian front always proceeds with speed
proportional to t����� However� in so�called case II di�usion in polymers� concentra�
tion fronts propagate with constant speed ��
� ��
� These fronts are usually sharp� and
often the concentration �ux into the phase change boundary is less than the concen�
tration �ux out� All of these characteristics are inconsistent with those of the Fickian
di�usion model� Though the concentration fronts are sharp� there is no discontinuity
in C� as observed in other� more standard chemical systems ��
�

The type of polymers which we wish to study can occupy one of two phases�
glassy or rubbery� In the glassy state� the polymer has a �nite relaxation time asso�
ciated with the length of the polymer in relation to the entanglement network� This
nonlocal e�ect implies that there will be a stress associated with the �memory
 of the
polymer with respect to its concentration history� In the rubbery state� the polymer
swells� making the relaxation time almost instantaneous� Hence� the �memory
 of the
polymer in the rubbery state is very faint� In addition� in many� but not all cases�
there is a great increase in the di�usion coe�cient as the polymer changes from the
glassy to rubbery state�

In order to incorporate this more complicated behavior into the �ux� we propose
the following much more general model for the �ux�

�	�	� J � �
�X
n��

Dn�C�r
Z
�

Z t

��

Fn�C�x�� t��
Gn�x� x�� t� t�� C�x�� t��
 dt� dx��

where the Dn are second�order tensors� the Fn are general di�erential operators on
C which model the dependency of J on di�erent dynamical processes� and the Gn
are general nonlinear hereditary kernels� Each term in the expansion represents a
�ux contribution from a di�erent source� such as molecular di�usion or viscoelastic
e�ects� This form for the �ux is general enough to model accurately many more types
of anomalous di�usive behavior than simply those associated with polymer�penetrant
systems� Furthermore� note that if we let Fn � ��nC�x�� t�� and Gn � ��n��x�x� � t�t��
we obtain the Fickian di�usion �ux�

In �	�
��	�
 Cohen and his colleagues have specialized equation �	�	� to several
di�erent cases of viscoeleastic di�usion� The main purpose of this paper is to formulate
and discuss the unusual moving boundary conditions which arise when one uses the
�ux in �	�	� to solve the standard di�usion equation Ct � �r �J� In the next section
we will specialize Fn and Gn to the particular case of viscoelastic stress we wish to
consider and consider the extra complication of dynamics at a moving boundary�

�� Governing equations� Consider a domain � which is divided into two dis�
joint connected subdomains �� and ��� �� is the region in which the polymer is in
the glassy state� while �� is the region in which the polymer is in the rubbery state�
We specify the value of the concentration in the interior of � at time t � � and on the
boundary �� for all time� We could just have easily speci�ed the �ux on the bound�
ary� though in the systems we wish to study the concentration is usually speci�ed� In
addition� the standard di�usion equation holds for the concentration in both domains�
though the �ux J may be di�erent in each region� Speci�cally� we are considering the
following system of equations�

���	a� Ct � �r � J�� x � ��� Ct � �r � J�� x � ���
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���	b� C�x� t� � Cb�t�� x � ��� C�x� �� � Ci�x�� x � ��

In polymer�penetrant systems� there is no discontinuity of concentration at the
front� it is merely very sharp� The front is characterized by a transition value C � C�
at which the glass�rubber phase transition takes place� Hence� we specify the following
condition�

����� C � C�� Ct � �� x � s�t��

We include the derivative in ����� since we mathematically de�ne the glassy region as
the region where C � C� and the rubbery region as the region where C � C��

At the moving boundary s�t� between the two regions a phase change takes place�
While the same physical mechanisms do not govern here� it is instructive to recall the
boundary condition used in the classical Stefan problem ��
� where a change of phase
takes place between ice and water� In that problem� the following condition holds�

����� J��s�t�� t� �n� J��s�t�� t� � n � � �J � n

s

� a �s � n� x � s�t��

Here a is the phase change parameter� Equation ����� states that the di�erence
between the �ux into and out of the front is used up in the phase transition� In a
standard Stefan problem� the parameter a has a physical interpretation �namely the
latent heat� and is always positive� We will see that in polymer�penetrant systems
the interpretation of a is not so straightforward� in later sections we will outline the
solution of equations where a is negative� Like the latent heat in a Stefan problem� a
must be known in order to solve the problem� However� there are experiments which
can be performed to determine a just as there are experiments which can be performed
to determine the latent heat of a substance� Such an experiment is outlined in x ��

Experimentalists note several important properties in the polymer�penetrant sys�
tems which we are trying to study� First� there is a �nite relaxation time �	�
 when the
polymer is in the glassy state� This indicates the presence of a viscoelastic memory
term in our �ux� The polymer is a�ected by past values of the concentration and its
time derivative ��
� �	�
� �	�
� so we make the following de�nitions�

����a� F� � C� G� � ��x� x�� t� t��� F� � H�t��f�C�Ct�� Fn � �� n � ��

����b� G� � exp

�
�
Z t

t�
��C�x� z�� dz

�
dt�� D��C� � D�C�� D��C� � E�C��

Here H�t�� is the Heaviside step function� f is some general scalar function� ��C� is
the inverse of the relaxation time for the polymer� and E�C� is a tensor� Speci�c
forms for f � �� and E will be chosen later� Hence we may write the �ux as

����a� J � �D�C�rC � E�C�r�� where

����b� � �

Z t

�

�f �C�x� t��� Ct�x� t���
 exp

�
�
Z t

t�
��C�x� z�� dz

�
dt��
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We also note that � plays the role of the viscoelastic memory term� and that the
de�nition of � in ����b� implies that

����� ��x� �� � ��

Lastly� we need a condition for the stress at the front� We follow the work of
Knauss and Kenner ���
� where the derivative of stress with respect to a state variable
has a jump in slope at the phase transition� but the actual stress is continuous�

����� � �s��t�� t� � � �s��t�� t� �

Using equations ����� in ���	a� and making � another dependent variable� we have
the following system of partial di�erential equations�

����a� Ct � r � �D�C�rC � E�C�r��

����b� �t � ��C�� � f�C�Ct��

Here we have combined the two equations on either side of the front� We will allow
discontinuities in ��C�� D�C�� E�C�� and f across the front� indicating distinct values
in the glassy and rubbery regions� Note that equation ����b� is reminiscent of the
memory integral term in viscoelasticity theory�

Now using equation ����a� in our �ux condition ������ we have the following�

����� �D�C��rC � E�C��r�

s
� n � a �s � n�

This is the condition at the moving boundary which replaces the standard Stefan �ux
condition� it is clearly more complicated than the standard Stefan condition� and the
interesting details of these complications will be explored in the next section�

�� A one�dimensional problem with �ux condition� For analytical trac�
tability� we �rst consider a one�dimensional problem on a semi�in�nite domain� in
which case ������ ������ ���	b�� ������ ������ and ����� become

���	a� Ct � �D�C�Cx � E�C��x�x � x � ��

���	b� �t � ��C�� � f �C�Ct� � t � ��

����� �D�C��Cx � E�C���x
 � a �s�

����a� C�x� �� � Ci�x��

����b� C��� t� � Cb�t�� C �b�t� � � �t � �� Cb�t� � C� for some t � ��

����� ��x� �� � ��
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����a� C�s�t�� t� � C�� Ct�s�t�� t� � ��

����b� �r �s�t�� t� � �g �s�t�� t� �

We take E�C� and D�C� to be scalar nonnegative strictly increasing functions of
C� re�ecting the situation typically encountered in controlled�release pharmaceuticals
��
���
� Note that in one dimension � can be interpreted as being analogous to stress�
We also label the glassy region �the region ahead of the front� with a superscript g
and the rubbery region �the region behind the front� with a superscript r�

Since we expect our front x � s�t� to be monotonically increasing in t� we may
invert to write the front as t � �s�x�� We then solve equation ���	b� subject to �����
and ����b� to yield

����a� �g�x� t� �

Z t

�

�f �C�x� t��� Ct�x� t���
 exp

�
�
Z t

t�
��C�x� z�� dz

�
dt��

����b�

�r�x� t� �

Z �s

�

�f�C�x� t��� Ct�x� t���
 exp

�
�
Z �s

t�
��C�x� z�� dz �

Z t

�s

��C�x� z�� dz

�
dt�

�

Z t

�s

�f�C�x� t��� Ct�x� t���
 exp

�
�
Z t

t�
��C�x� z�� dz

�
dt��

We have expanded the argument of the exponential in the �rst term of �r since we
expect the relaxation time to undergo a discontinuous jump at C � C�� in agreement
with experiments �	�
�

In general� if we have functions

fg�x� t� �

Z t

�

f ����x� z� t� dz�

fr�x� t� �

Z �s�x�

�

f �	��x� z� t� dz �

Z t

�s�x�

f ����x� z� t� dz�

then Leibniz s rule for di�erentiation states that

����� �fx
�s �

Z �s

�

�
f ��� � f �	�

�
x

�x� z� �s� dz � �s�
�
f ����x� �s� �s�� f �	��x� �s� �s�

�
�

Note that since we have changed variables� �fx
�s � fgx �x� �s��x��� frx�x� �s��x���
Now using equations ����� in ������ we have the following�

����a�

�E�C���x
�s �

Z �s

�

fJ �C
 � �s�f�C�Ct��E�C����C��
�sg exp

�
�
Z �s

t�
��C�x� z�� dz

�
dt�

� E�C�
� ��s� �f�C�� Ct�
�s �

where
����b�

J �C
 � �E�C��
�s

�
fx �C�x� t��� Ct�x� t��� � f�C�Ct�

Z �s

t�
�� �C�x� z��Cx�x� z� dz

�
�
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Simplifying and transforming to our original variables� we have

�����

�E�C���x
�s �

Z �s

�

J �C
 exp

�
�
Z �s

t�
��C�x� z�� dz

�
dt�

�
�E�C����C��
s��s�t�� t�

�s
� E�C�

� � �f�C�� Ct�
s
�s

which makes our �ux condition �����

���	��

�D�C��Cx
s �

Z �s

�

J �C
 exp

�
�
Z �s

t�
��C�x� z�� dz

�
dt�

�
�E�C����C��
s��s�t�� t�

�s
� E�C�

� � �f�C�� Ct�
s
�s

� a �s�

There are several interesting things to note in equation ���	��� First� it may seem
that we have not simpli�ed matters much� since � still appears in our �ux condition�
However� in practice it is much easier� both analytically and numerically� to determine
� than �x� Note also that we have a negative contribution to the left�hand side� so we
cannot be assured that a is positive� as was always true in the latent heat formulation�

More interesting is the appearance of �s�t� in the denominator of some of our
�ux terms� This condition is highly unusual and leads to nonstandard front motion�
especially when one considers the fact that �s�t� may also appear in the expressions for
the concentration and the �ux� For instance� it is clear from ���	�� that if all the �ux
and stress terms are bounded as t � �� �s�t� must approach a constant as t � ��
This means that these di�usive systems will have fronts which move with constant
speed� Such fronts are characteristic of polymer�penetrant systems�

In general� the behavior induced by ���	�� is highly complicated� Boundary condi�
tions of the type of ���	�� are unusual in the mathematical literature� and certainly no
comprehensive theoretical study of such a condition has ever been attempted� Hope�
fully such a study will be made in light of the fact that this paper will demonstrate that
such an odd condition as ���	�� does occur in real�world problems� In the next section
we will specialize our problem further� thereby making it possible to �nd analytical
solutions�

�� Further simpli�cations	 a tractable problem� The �rst simpli�cation
we choose to make is that in both regions f takes the same simple form�

���	� f�C�Ct� � �C � �Ct�

Here � and � are positive constants� We choose this form because it is simple to
analyze and accurately captures the dominant physical processes in the system �	�
�

Then equations ���	b� and ���	�� become

����� �t � ��C�� � �C � �Ct�

�����

�D�C��Cx
 �

Z �s

�

J �C
 exp

�
�
Z �s

t�
��C�x� z�� dz

�
dt�

�
�E�C����C��
s��s�t�� t�

�s
� E�C�

� � ��C� � �Ct
s
�s

� a �s�
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Now using the �rst of equations ����a� and its total derivative with respect to t� we
have

�������
D�C�� � �E�C�

� �
�
Cx

�
s

�

Z �s

�

J �C
 exp

�
�
Z �s

t�
��C�x� z�� dz

�
dt�

�
�E�C����C��
s��s�t�� t�

�s
� a �s�

Hence we see that this particular form for f dictates a simple relationship between
the viscoelastic �ux contribution and the concentration �ux contribution�

Experiments have shown that variations in the relaxation time within phases seem
to contribute little to the overall behavior� Therefore� we average the relaxation time
in each phase and use its overall value there� Thus we have

����� ��C� �

�
�g� � � C � C��
�r� C � C��

Under these assumptions� our �ux condition ����� becomes

�������
D�C�� � �E�C�

� �
�
Cx

�
s

�

Z �s

�

�E�C��
s �fx �C�x� t��� Ct�x� t���
 e��g��s�t
�� dt�

�
�E�C����C��
s��s�t�� t�

�s
� a �s�

We note that changes in E�C� also do not contribute signi�cantly to the behavior
of the system� Hence� we approximate E�C� by its average value in the entire polymer�
which we denote by E� a positive constant� Doing so� ���	a� and ����� become the
following�

����� Ct � �D�C�Cx�x � E�xx�

����� ��D�C�� � �E�Cx
s �
E��g � �r���s�t�� t�

�s
� a �s�

Note that since �r � �g � we have a negative contribution to the left�hand side of ������
In addition� in some polymer�penetrant systems� �Cx
s 	 �� Therefore� we conclude
that in certain polymer�penetrant systems a will be negative�

In order to make the problem analytically tractable� we make one more simplify�
ing assumption� As stated before� the di�usion coe�cient often� though not always�
increases dramatically as the polymer goes from the glassy to rubbery state� However�
changes within phases are less important� Hence� we perform the same averaging as
we did with the relaxation time to obtain the following form for D�C��

����� D�C� �

�
Dg � � � C � C��
Dr � C � C��

Since we have chosen this simplistic form� equation ����� may be written

���	�� Ct � D�C�Cxx � E�xx�
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Taking advantage of the fact that all our functions are now piecewise constant� we
may combine equations ���	�� and ����� to yield the following equation for C �which
also holds for ���

���		� Ctt � �D�C� � �E
Cxxt � ��C�Ct � ���C�D�C� � �E
Cxx�

Note that the classical technique of seeking similarity solutions will not in general
solve an equation of the form of ����� or ���		�� Boley ��	
 developed an integral�
equation solution technique to solve some classes of moving�boundary problems for
which no similarity solutions exist� We have used this technique extensively and with
great success� To begin� we introduce two new functions T g and T r which are the
extensions of Cg and Cr to the entire domain and which satisfy the following equations�

���	�a� T g
tt � �Dg � �E�T g

xxt � �gT
g
t � ��gDg � �E�T g

xx� x � ��

���	�b� T g�x� t� � Cg�x� t�� x � s�t��

���	�a� T g�x� �� � Ci�x��

���	�b� T g��� t� � gb�t��

���	�� T g�s�t�� t� � C�� T g
t �s�t�� t� � ��

���	�a� T r
tt � �Dr � �E�T r

xxt � �rT r
t � ��rDr � �E�T r

xx� x � ��

���	�b� T r�x� t� � Cr�x� t�� � 	 x 	 s�t��

���	�a� T r�x� �� � gi�x��

���	�b� T r��� t� � Cb�t��

���	�� T r�s�t�� t� � C�� T g
t �s�t�� t� � ��

���	�� �Dg � �E�T g
x � �Dr � �E�T r

x �
E��g � �r���s�t�� t�

�s
� a �s�

The functions gb�t� and gi�x� are necessary since we have extended equations
���	�a� and ���	�a� outside their region of validity� Since equations ����� only hold in
the domain of validity of ���	�� we must introduce these �ctitious boundary conditions�
The systems of equations ���	������	�� and ���	������	�� can be solved using standard
Green s function techniques� The resulting solutions� which are written as convolutions
of gb�t� and gi�x�� can then be substituted into equations ���	��� ���	��� and ���	�� to
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yield a system of three integral equations for the three unknowns gb�t�� gi�x�� and s�t��
Asymptotic and numerical methods can then be employed to solve these equations�

Though we are now using linear operators� note that we have introduced nonlin�
earities in ��C� and in ���	��� which still contains �� which is a decidedly nonlinear
function of C� Therefore� in certain parameter ranges one must contend with notions
of nonuniqueness and bifurcation ���
� In this paper we simply wish to outline the
solution process� a brief result is presented in the next section�


� Analytical results for a dissolution problem� We now model a polymer
entanglement network dissolving in the presence of a solvent� the concentration of
which will be denoted by C� To demonstrate the unusual behavior encountered� what
follows is a sketch of our solution technique� an expanded discussion of our solution
techniques� as well as solutions to other polymer�penetrant system models� appears in
���
����
� In this particular experiment� any change in di�usion coe�cient does not
a�ect the physics� so we may take Dg � Dr � D� We begin by nondimensionalizing
our problem in the following manner�

���	� length scale�

s
D

�r
� time scale�

	

�r
�

�g

�r
� 
� � 	 
� 	�

From experimental observations� we also expect the stress contribution to be impor�
tant� so we let � � ��
��� We hypothesize that the following expansions in 
 hold�

����a� T g � T �g � o�	�� T r � T �r � o�	��

����b� �g � 
����g � o�
���� �r � 
����r � o�
����

Now substituting equations ���	� and ����� and our expressions for D and � into
equations ���	�a�� ������ ���	�a�� and ���	��� we have �to leading orders�

����a� T �g
tt � ��T �g

xx �

����b�� ��gt �
��

�
T �g� x � s�t��

����� T �r
tt � ��T �r

xx � T �r
t �

����� 

 �T �
x 
s � �

��g �s�t�� t�

�s
� a �s�

where �� � ��E��gD� � � �E�D� and 
 � 	 � �� In a standard Stefan problem� the
same operator hold on both sides of the front� but the coe�cients are di�erent� Note
that here the problem is much more complicated� here two di�erent operators hold
on each side of the front� This extra complication also makes our system �����������
worthy of further theoretical study for existence and uniqueness of solutions�

It is clear that in this problem if �T �
x 
 � O�	�� then a 	 �� since we expect � � �

and �s � �� Even if �T �
x 
 � O�	�� a may still be negative if the concentration at the

front exhibits a nonstandard pro�le� This con�rms our earlier suspicions that the
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parameter a cannot be given a simple physical interpretation� However� for reasons
that will become clear later we wish to restrict a to the following range�

����� a 	 �� C� � jaj � 	�

In this problem� the polymer is dry when the experiment starts� so equation
���	�a� becomes

����� T g�x� �� � ��

We now wish to model a polymer entanglement network dissolving in the presence
of a solvent� Here C is the concentration of the solvent� Imagine an experiment in
which a polymer matrix is exposed to a in�nite well of diluent� Though the concentra�
tion of the diluent may be 	 at the edge of the polymer matrix� it is clear that at the
instant that we introduce the polymer into the solvent� the concentration can be no
greater than C�� which is now de�ned as that concentration at which the entanglement
network dissolves� We would expect that the maximal concentration of the diluent at
the boundary will be achieved only in the mathematical limit t��� This motivates
our boundary condition

����� C���� t� � Cb�t� � 	� �	� C��e�rt� r 	� 	�

where r is a constant� We have included the requirement r 	� 	 to eliminate the
presence of logarithmic singularities in our solutions�

For x � �t the solution to our outer problem is exactly �� We will call the line
x � �t the primary front� referring to the fact that it is the �rst signal to reach a
certain point� However� it is not the moving boundary between the two phases at
which ���	�� holds� That boundary is the secondary front x � s�t�� which we de�ne
to be the curve where the network is completely dissolved� In other words� it is where
both conditions in ���	�� and ���	�� hold� It is clear that s�t� 	 �t for all t� We see from
equation ����a� that the characteristics of the outer problem carry some constant value
T �g � C� forward with speed �� so there must exist a �mushy region
 s�t� 	 x 	 �t
where T �g � C�� It can be shown that there can be no other boundary layer in the
glassy polymer� so C� � C�� This is illustrated in Fig� 	�

x � s�t� x � �t

C � Cr� � � �r

C � �� � � �

C � C�

� � �g

t

x

Fig� �� Regions of validity for di�erent outer representations�
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Since our full equation cannot support the discontinuity found in the solution of
the outer problem� we must construct a boundary layer around the subcharacteristic
x � �t� giving us the uniformly valid solution in the glassy region

����� Tug�x� t� �
C�
�

erfc

�
x� �tp

�

t

�
�

Equation ����� is the standard functional form that appears when a smoothing term
is eliminated in an outer expansion and a hyperbolic equation results�

Since ���		� �and hence ����a�
 also hold for �� we see that � � � for x � �t�
Therefore� in the mushy region� we may use this fact and immediately solve ����b� to
yield

���	�� ��g�x� t� �
��C�

�

	
t� x

�



�

Hence� in order for ��g stay bounded �which is what we expect on physical grounds��
we see that

���		� s�t� 
 �t� s� � s��t� as t���

where s� � � and s��t� � � as t � �� Using equation ���	�� evaluated at our
secondary front� we see that equation ����� becomes

���	�� 

 �Cx
s �
��C�

�s

�
t� s�t�

�

�
� a �s�

It can be shown that a boundary layer exists in the rubbery region� and that the
uniformly valid solution is given by

���	�� Tur�x� t� � T �r�x� t� � �C� � T �r�s�t�� t�
 exp

�
��� � �s���x� s�t�




 �s

�
�

Using ���	�� in ���	��� we have

���	�� �T �r�s�t�� t� � C�
 ��� � �s�� � ��C�

�
t� s�t�

�

�
� a �s��

Using the integral method� we can solve equations ���	��� ���	�a�� and ����� to
yield

���	�a�

T �r�x� t� � gi�x� � �

Z t

�

�g�i�x � �z� � g�i�jx� �zj�
gk�z� t� dz � �gi���gk�x��� t�

�
x

�

Z t

x��

e�z��
�
	� �	� C��e�r�t�z�

� I��p��z� � x�����p
��z� � x�

dz

�
�
	� �	 �C��e�r�t�x���

�
e�x����

where

���	�b� gk�z� t� �

�
e�z��

�
�

z

�

Z t

z

e�y��
I��
p
y� � z����p
y� � z�

dy

�
H�t � z��
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Performing long�time asymptotics on equations ���	�� and substituting our results
in ���	�� and ���	��� we obtain the results that

���	�� s� �
jaj�
C�

� T �r�s�t�� t� 
 jaj�

Then we see from C� � C�r � 	 that we have our compatibility condition ������
We next perform short�time asymptotics on equations ���	��� Substituting our

results into equations ���	�� and ���	��� we have an interesting result� in order for our
solutions to be twice continuously di�erentiable� we must have that

���	�� r �
C�

	�C�
�

What does this mathematical constraint mean physically! It says that in order for our
dissolution front to propagate� the concentration at the interface between the polymer
and the reservoir must be regulated by the polymer network itself� Thus r in some
sense represents the internal dissolution rate of the polymer and could be related to
the strength of the entanglement network�

Going to the next order in the asymptotics yields the result that

���	�� s�t� 
 �C�t�

�
p

�jaj�	� C��
�

Figure � shows a plot of our superimposed asymptotic expansions for the listed
set of parameter values� The grey line is the primary front� The narrow lines are the
graphs of our actual asymptotic expansions ���	�� and ���	��� while the thicker line
is simply a sketch of the way the actual front would interpolate between these two
expansions� Note that there are several important results here from an experimental
point of view� By simply performing the experiment heretofore outlined� one can
determine � �from the front speed�� C� �from the concentration in the mushy region��
and a �from the width of the mushy region�� In fact� Fig� � accurately captures the
qualitative behavior of a polymer such as poly�methyl�methocrylate dissolving in the
presence of a solvent such as toluene ���
�

���	��

���	��
x � �tC � Cr� � � �r

C � �� � � �

C � C�

� � �g

t

x

Fig� �� Superimposed asymptotic front expansions� C� � 
��� a � �
���� � � ��
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Though in this section we concerned ourselves primarily with calculating the
motion of the front� in ���
����
 we supply the details of our calculations� which include
asymptotic estimates of the stress and concentration pro�les�

�� Conclusions� New materials and their large number of widely varied ap�
plications have revolutionized several scienti�c �elds� This has led the engineering
community to clamor for coherent mathematical models in order better to control
the design of such materials� The standard Fickian di�usion model is insu�cient to
explain the phenomena observed� including sharp fronts moving with constant speed
and fronts where the concentration �ux behind the front is less than that ahead of the
front�

By simplifying our general model �	�	�� we are able to model the most salient
nonstandard feature of many classes of polymer�penetrant systems� a nonlocal �mem�
ory
 e�ect which induces a viscoelastic stress� This e�ect varies between the polymer
phases� as does the di�usion coe�cient� The moving boundary�value problem which
ensues has not received much attention in the mathematical literature� Further study
is needed of this boundary condition to study the existence and uniqueness of solu�
tions to such a condition� especially since this condition is not solvable by similarity
solutions�

We rely upon an integral method developed by Boley ��	
 which gives solutions
which are not in closed form� By using a perturbation expansion in a suitable small
parameter� we were able to reduce the problem to one where two di�erent operators
held on either side of the front� The nonlinearities and complications inherent in such
a problem merit further study� especially in the area of bifurcation analysis�

However� in the case we present� we obtain asymptotic estimates for the motion
of the front� In ���
����
 we demonstrate the details of these calculations and how
they are used to obtain the concentration and stress pro�les for the problem treated
here and for several additional problems arising in other applications�

�� Nomenclature�

���� Variables and parameters�

a� coe�cient in �ux�front speed relationship ������
A� matching constant�

C�x� t�� concentration of penetrant or diluent at position x and time t�
D�C�� binary di�usion coe�cient for system�
E�C�� coe�cient preceding the stress term in the modi�ed �ux equation ����a��

f�C�Ct�� arbitrary function in viscoelastic stress term�
Fn�C
� nonlinear di�erential operator on C�
g���� arbitrary function� variously de�ned�
Gn��
� hereditary kernel�
H���� Heaviside step function� de�ned as � for negative argument and 	 for positive

argument�
In���� the nth modi�ed Bessel function�

J�x� t�� �ux at position x and time t�
n� indexing integer�
r� dimensionless parameter in dissolution problem boundary condition ������

s�t�� position of secondary front� de�ned as C�s�t�� t� � C� and Ct�s�t�� t� � ��
�s�x�� the inverse function of x � s�t�� written as t � �s�x��

t� time from imposition of external concentration�
T �x� t�� imbedding of C from one region to the fully semi�in�nite region�
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x� one�dimensional spatial variable�
x� three�dimensional spatial variable�
y� dummy integration variable�
z� dummy integration variable�
Z� the integers�

� nondimensional parameter� value 	 � ��

��C�� inverse of the relaxation time�
�� nondimensional parameter� value �E�D�

��n� the Kronecker delta function�
����� the Dirac delta function�


� perturbation expansion parameter� value �g��r �
�� nondimensional parameter� value

p
��E��gD�

�� coe�cient of concentration in stress evolution equation ������
�� coe�cient of Ct in stress evolution equation ������

��x� t�� stress in polymer at position x and time t�
�� region occupied by the polymer�

��� boundary of the region ��

���� Additional notation�

b� as a subscript� used to indicate a quantity at the boundary of the polymer�
g� as a sub� or superscript� used to indicate the glassy state�
i� as a subscript� used to indicate an quantity at t � ��

n � Z� as a superscript� used to indicate a term in an expansion in 
� as a subscript�
used to indicate a particular region of the polymer or a term in an expansion
in t�

k� as a subscript� used to indicate a kernel�
r� as a sub� or superscript� used to indicate the rubbery state�
t� as a subscript� used to indicate partial di�erentiation with respect to t�
u� as a superscript� used to indicate a uniform expansion�
x� as a subscript� used to indicate partial di�erentiation with respect to x�
�� with a function� used to indicate di�erentiation with respect to x� with an

independent variable� used to indicate a dummy integration variable�
� � used to indicate di�erentiation with respect to t�
�� as a subscript� used to indicate a matching value between two states or two

representations�
�� as subscript� used to indicate a term in an expansion in t�
��
s� jump across the front s� de�ned as �g�s��t�� t�� �r�s��t�� t��
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