- 1. The standard proof of the uniqueness of finite fields (up to isomorphism) uses the fact that a splitting field of a polynomial is unique up to isomorphism. The purpose of this problem is to establish this fact.
 - **Definition:** Let E be an extension field of F, and $f(x) \in F[x]$. We say that f(x) splits in E if f(x) can be written as a product of linear factors in E[x]. We call E a splitting field of f(x) over F if f(x) splits in E but in no proper subfield of E.
 - (a) Show that every non-constant polynomial has a splitting field.
 - (b) Let F be a field and let $p(x) \in F[x]$ be irreducible over F. If α is a root of p(x) in some extension E of F and β is a root of p(x) in some extension E' of F, then show that $F(\alpha) \cong F(\beta)$
 - (c) Let $p(x) \in F[x]$ be irreducible over F, where F is a field, and let α be a root of p(x) in some extension of F. If ϕ is a field isomorphism from F to F', and β is a root of $\phi(p(x))$ in some extension of F', then show that there exists an isomorphism from $F(\alpha)$ to $F'(\beta)$ that agrees with ϕ on F and carries α to β .
 - (d) Let ϕ be an isomorphism from a field F to a field F' let $f(x) \in F[x]$. If E is a splitting field for f(x) over F and E' is a splitting field for $\phi(f(x))$ over F', then \exists an isomorphism from E to E' that agrees with ϕ on F. [Hint: Use induction on deg(f(x))]
 - (e) Let F be a field and $f(x) \in F[x]$. Show that any two splitting fields of f(x) over F are isomorphic.
- 2. Let F be a finite field different from \mathbb{Z}_2 . Show that the sum of all elements of F is 0.
- 3. Let $a, b \in \mathbb{F}_{2^n}$, where n is odd. Show that $a^2 + ab + b^2 = 0$ implies that a = b = 0.
- 4. Let F be any field. If F^* is cyclic then show that F is finite.
- 5. Let α be a root of $x^2 2 \in \mathbb{Z}_5[x]$. Explain why $\mathbb{Z}_5(\alpha)$ must be the field GF(25). List every element of GF(25)as a linear combination of $\{1, \alpha\}$ over \mathbb{Z}_5 . Is α a generator of the multiplicative group of $GF(25)^*$? If not, find one (such an element is called a primitive element) and call it β . Finally, for each $\gamma \in GF(25)$ of the form $a + b\alpha, a, b \in \mathbb{Z}_5$ (in your list above), determine the least $n \in \mathbb{N}$ such that $\gamma = \beta^n$. (The integer n with this property is called the **discrete logarithm** of γ to the base β , and denoted by $\log_\beta \gamma$)
- 6. Let $f(x) \in \mathbb{F}_q[x]$ be an irreducible polynomial of degree m.
 - (a) Show that f(x) has a root α in \mathbb{F}_{q^m} . Also show that the roots are simple (not repeated) and given by $\alpha, \alpha^q, \ldots, \alpha^{q^{m-1}}$
 - (b) Let $\alpha \in \mathbb{F}_{q^m}$. The elements $\alpha, \alpha^q, \ldots, \alpha^{q^{m-1}}$ are called the conjugates of α over \mathbb{F}_q (or conjugates of α with respect to \mathbb{F}_q). Show that the conjugates of $\alpha \in \mathbb{F}_{q^m}^*$ with respect to \mathbb{F}_q have the same order in $(\mathbb{F}_{q^m}^*, \cdot)$.
 - (c) Let $f(x) = x^4 + x + 1 \in \mathbb{F}_2[x]$. Show that f(x) is irreducible over \mathbb{F}_2 . Let α be a root of f(x). What is the smallest finite field that contains α ? Let \mathbb{F}_q be that finite field. Compute conjugates of α over \mathbb{F}_2 and also over \mathbb{F}_4 . What is the order of α in \mathbb{F}_q ? Is it a primitive element of \mathbb{F}_q ?
- 7. Show that $x^{p^n} x$ is the product of all monic irreducible polynomials in $\mathbb{Z}_p[x]$ of degree d dividing n (This is the same as Problem 13 in Section 33)
- 8. Let q be a prime power and let n be a positive integer such that gcd(n,q) = 1.
 - (a) Show that the polynomial $x^n 1 \in \mathbb{F}_q[x]$ has distinct roots (no multiple roots)
 - (b) What is the smallest extension of \mathbb{F}_q that contains a primitive *n*-th root of unity?
 - (c) Let q = 3 and n = 11. Find the smallest extension E of \mathbb{F}_3 that contains an 11-th root of unity, and identify a primitive 11-th root of unity in E.
 - (d) Obtain the factorization $x^{11} 1$ over E, and use this factorization to obtain the factorization of $x^{11} 1$ over \mathbb{F}_3 .