
Problems on Finite Fields

1. The standard proof of the uniqueness of finite fields (up to isomorphism) uses the fact that a splitting field of a
polynomial is unique up to isomorphism. The purpose of this problem is to establish this fact.
Definition: Let E be an extension field of F , and f(x) ∈ F [x]. We say that f(x) splits in E if f(x) can be
written as a product of linear factors in E[x]. We call E a splitting field of f(x) over F if f(x) splits in E but
in no proper subfield of E.

(a) Show that every non-constant polynomial has a splitting field.

(b) Let F be a field and let p(x) ∈ F [x] be irreducible over F . If α is a root of p(x) in some extension E of F
and β is a root of p(x) in some extension E′ of F , then show that F (α) ∼= F (β)

(c) Let p(x) ∈ F [x] be irreducible over F , where F is a field, and let α be a root of p(x) in some extension of
F . If φ is a field isomorphism from F to F ′, and β is a root of φ(p(x)) in some extension of F ′, then show
that there exists an isomorphism from F (α) to F ′(β) that agrees with φ on F and carries α to β.

(d) Let φ be an isomorphism from a field F to a field F ′ let f(x) ∈ F [x]. If E is a splitting field for f(x) over
F and E′ is a splitting field for φ(f(x)) over F ′, then ∃ an isomorphism from E to E′ that agrees with φ
on F . [Hint: Use induction on deg(f(x))]

(e) Let F be a field and f(x) ∈ F [x]. Show that any two splitting fields of f(x) over F are isomorphic.

2. Let F be a finite field different from Z2. Show that the sum of all elements of F is 0.

3. Let a, b ∈ F2n , where n is odd. Show that a2 + ab+ b2 = 0 implies that a = b = 0.

4. Let F be any field. If F ∗ is cyclic then show that F is finite.

5. Let α be a root of x2 − 2 ∈ Z5[x]. Explain why Z5(α) must be the field GF (25). List every element of GF (25)
as a linear combination of {1, α} over Z5. Is α a generator of the multiplicative group of GF (25)∗? If not, find
one (such an element is called a primitive element) and call it β. Finally, for each γ ∈ GF (25) of the form
a + bα, a, b ∈ Z5 (in your list above), determine the least n ∈ N such that γ = βn. (The integer n with this
property is called the discrete logarithm of γ to the base β, and denoted by logβ γ)

6. Let f(x) ∈ Fq[x] be an irreducible polynomial of degree m.

(a) Show that f(x) has a root α in Fqm . Also show that the roots are simple (not repeated) and given by

α, αq, . . . , αq
m−1

(b) Let α ∈ Fqm . The elements α, αq, . . . , αq
m−1

are called the conjugates of α over Fq (or conjugates of α with
respect to Fq). Show that the conjugates of α ∈ F∗qm with respect to Fq have the same order in (F∗qm , ·).

(c) Let f(x) = x4 + x+ 1 ∈ F2[x]. Show that f(x) is irreducible over F2. Let α be a root of f(x). What is the
smallest finite field that contains α? Let Fq be that finite field. Compute conjugates of α over F2 and also
over F4. What is the order of α in Fq? Is it a primitive element of Fq?

7. Show that xp
n − x is the product of all monic irreducible polynomials in Zp[x] of degree d dividing n (This is

the same as Problem 13 in Section 33)

8. Let q be a prime power and let n be a positive integer such that gcd(n, q) = 1.

(a) Show that the polynomial xn − 1 ∈ Fq[x] has distinct roots (no multiple roots)

(b) What is the smallest extension of Fq that contains a primitive n-th root of unity?

(c) Let q = 3 and n = 11. Find the smallest extension E of F3 that contains an 11-th root of unity, and identify
a primitive 11-th root of unity in E.

(d) Obtain the factorization x11 − 1 over E, and use this factorization to obtain the factorization of x11 − 1
over F3.


