1. The standard proof of the uniqueness of finite fields (up to isomorphism) uses the fact that a splitting field of a polynomial is unique up to isomorphism. The purpose of this problem is to establish this fact.
Definition: Let E be an extension field of F, and $f(x) \in F[x]$. We say that $f(x)$ splits in E if $f(x)$ can be written as a product of linear factors in $E[x]$. We call E a splitting field of $f(x)$ over F if $f(x)$ splits in E but in no proper subfield of E.
(a) Show that every non-constant polynomial has a splitting field.
(b) Let F be a field and let $p(x) \in F[x]$ be irreducible over F. If α is a root of $p(x)$ in some extension E of F and β is a root of $p(x)$ in some extension E^{\prime} of F, then show that $F(\alpha) \cong F(\beta)$
(c) Let $p(x) \in F[x]$ be irreducible over F, where F is a field, and let α be a root of $p(x)$ in some extension of F. If ϕ is a field isomorphism from F to F^{\prime}, and β is a root of $\phi(p(x))$ in some extension of F^{\prime}, then show that there exists an isomorphism from $F(\alpha)$ to $F^{\prime}(\beta)$ that agrees with ϕ on F and carries α to β.
(d) Let ϕ be an isomorphism from a field F to a field F^{\prime} let $f(x) \in F[x]$. If E is a splitting field for $f(x)$ over F and E^{\prime} is a splitting field for $\phi(f(x))$ over F^{\prime}, then \exists an isomorphism from E to E^{\prime} that agrees with ϕ on F. [Hint: Use induction on $\operatorname{deg}(f(x))$]
(e) Let F be a field and $f(x) \in F[x]$. Show that any two splitting fields of $f(x)$ over F are isomorphic.
2. Let F be a finite field different from \mathbb{Z}_{2}. Show that the sum of all elements of F is 0 .
3. Let $a, b \in \mathbb{F}_{2^{n}}$, where n is odd. Show that $a^{2}+a b+b^{2}=0$ implies that $a=b=0$.
4. Let F be any field. If F^{*} is cyclic then show that F is finite.
5. Let α be a root of $x^{2}-2 \in \mathbb{Z}_{5}[x]$. Explain why $\mathbb{Z}_{5}(\alpha)$ must be the field $G F(25)$. List every element of $G F(25)$ as a linear combination of $\{1, \alpha\}$ over \mathbb{Z}_{5}. Is α a generator of the multiplicative group of $G F(25)^{*}$? If not, find one (such an element is called a primitive element) and call it β. Finally, for each $\gamma \in G F(25)$ of the form $a+b \alpha, a, b \in \mathbb{Z}_{5}$ (in your list above), determine the least $n \in \mathbb{N}$ such that $\gamma=\beta^{n}$. (The integer n with this property is called the discrete logarithm of γ to the base β, and denoted by $\log _{\beta} \gamma$)
6. Let $f(x) \in \mathbb{F}_{q}[x]$ be an irreducible polynomial of degree m.
(a) Show that $f(x)$ has a root α in $\mathbb{F}_{q^{m}}$. Also show that the roots are simple (not repeated) and given by $\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}$
(b) Let $\alpha \in \mathbb{F}_{q^{m}}$. The elements $\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}$ are called the conjugates of α over \mathbb{F}_{q} (or conjugates of α with respect to \mathbb{F}_{q}). Show that the conjugates of $\alpha \in \mathbb{F}_{q^{m}}^{*}$ with respect to \mathbb{F}_{q} have the same order in $\left(\mathbb{F}_{q^{m}}^{*}, \cdot\right)$.
(c) Let $f(x)=x^{4}+x+1 \in \mathbb{F}_{2}[x]$. Show that $f(x)$ is irreducible over \mathbb{F}_{2}. Let α be a root of $f(x)$. What is the smallest finite field that contains α ? Let \mathbb{F}_{q} be that finite field. Compute conjugates of α over \mathbb{F}_{2} and also over \mathbb{F}_{4}. What is the order of α in \mathbb{F}_{q} ? Is it a primitive element of \mathbb{F}_{q} ?
7. Show that $x^{p^{n}}-x$ is the product of all monic irreducible polynomials in $\mathbb{Z}_{p}[x]$ of degree d dividing n (This is the same as Problem 13 in Section 33)
8. Let q be a prime power and let n be a positive integer such that $\operatorname{gcd}(n, q)=1$.
(a) Show that the polynomial $x^{n}-1 \in \mathbb{F}_{q}[x]$ has distinct roots (no multiple roots)
(b) What is the smallest extension of \mathbb{F}_{q} that contains a primitive n-th root of unity?
(c) Let $q=3$ and $n=11$. Find the smallest extension E of \mathbb{F}_{3} that contains an 11-th root of unity, and identify a primitive 11 -th root of unity in E.
(d) Obtain the factorization $x^{11}-1$ over E, and use this factorization to obtain the factorization of $x^{11}-1$ over \mathbb{F}_{3}.
