8.6 Huffman Trees

&
5.
b~}
o
k
1o

in English Text

Huffman Tree Based on Frequency of Letters

Frequency of Letters i English Text

FIGURE § 35

E 3 & 3 E:] k-] ®

: 292 CHAPTER 6 » MAPS: BINARY TREES, TRIES, AND TERNARY TREES

St
i TS
e oo
: -
2 o -
e ‘
T
‘j a8 117
e
e
ish
“\‘% W\
5
i g . . for those that are rarer, Some compression programs, such as the Unix utilities pacl
B and compact, work in this manner.
N The set of codes that we use must result in uniquely decodable files; that is, ther
E’;‘& g . must be an unambiguous decoding of the file. If the codes are all the same length
Tk : this is not a problem. The ASCII for BEAD is the following 32-bit string made up o:
SR four 8-bit character codes.
SRR ‘
:‘}\k e 01000010010001010100000101000100
(¥ .
hj\é‘.‘ 2 o e - Consider the characters and binary codes shown in Table 6.5.
i ‘\%3 o ’ _ Using the codes in Table 6.5, BEAD is represented as 0011000011001, However,
;\\&\\“%g\\}s‘ this binary string is ambiguous because it can be decoded both as BEAD and as
\\\\{\ *\gy 4 BEFB. The problem arises because. one code (01, the code for A) is the prefix ol
‘{}\l\\. :Eh‘éx‘l ; another (011, the code for F). We can eliminate the possibility of ambiguity and also
‘:\}&) arrive at an encoding that is in some sense optimal by employing a technique
"Q\\?\j"‘\ i . devised by Huffman (1952} that uses a binary trie.
Re}@‘m i Assume we have symbols S; . . . S, with associated relative frequencies of
j\\fi;\j,““"“) : Py ... P, For illustrative purposes, we use the symbols and relative frequencies
‘e\‘ \ . shown in Table 6.6.
A 3:‘“‘, Huffman’s techniqus for deriving codes waorks as follows.

“\: \‘\ \\\‘ \\\‘\‘

1 \\\\\"\

\\&‘-\ ‘\\; N | \ .
* \\:{ *\\ \ _
\\\ ‘\‘\\% “‘“e:. . \ \ \&g

, Unix utilities pack

le files; that is, there
all the same length,
5it string made up off.-

5.5, ;
000011001, Howe?

joth as BEAD an-d ,
'or A) is the prefix ¢
- of ambiguity and ?ls
nploying a technig

elative frequencies ‘l,,
1d relative frequenc

r (other trees are possible depending on how we break ties),

6.6 BINARY TREE APPLICATIONS 293

Make each symbol S; @ single node with associated weight p;.
While (more than one parentless node)

{) .
Identify the two parentless nodes with the smallest
weights (hreaking ties arbitrarily) .
Create’a new node, make it the parent of the two selected nodes
and associate with it the sum of the weights of its children
) .
‘Label the branches of the tree: for each nonleaf node label one of its
Branches with '0' and the other with '1’,
The code for a symbol is constructed by concatenating the characters
('0* or '11) on the path from the root to the symbol,

For example, from the data in Table 6.8, we first combine node D {weight 1) with
either E or F (weight 2), Choosing E yields the structure shown in Figure 6.46.

We now combine node F (weight 2) with one of the nodes with weight 3,
Choosing G gives us the tree shown in Figure 6.47.

The two nodes with the smallest weights niow are node C and the node that

resulted from our first construction. Joining these yields the structure shown in
Figure 6.48.

We continue in this manner, {inally arriving at the tree shown in Figure 6.49

We now label the links. One of the links from a parent to its child will be labeled
" “1” and the other will be labeled “0,” but it does not matter which is which. Figure
6.50 shows a possible tree after this labeling has been done.

- 3
A B C b E F G
6 5 4 1 2 2 3
Figure 6.46 « Tree construction: Step 1
3 ‘5
A B c '] E F G
6 5 4 1 2 2 3

Figure 6.47 » Tree construction: Step 2

@

T 294 CHAPTER 6 » MAPS: BINARY TREES, TRIES, AND TERNARY TREES

o
m
-n

A B
6

, Figure 6.48 « Tree construction: Step 3

Yo

23

T s

=

Qo

11 /\ 3 - 5 ' i
: \ /\ : '//’\\‘ : :
= ; ‘ : c D E F G

6 5 g 1 2

2 3 f |

Figure 6.49 « Huffman tree before labeling

Figure 6.50 « Labeled Huffman tree

-1

e

o

-] @ e [] @ [] 3

6.6 BINARY TREE APPLICATIONS 295

2

\

® TABLE 6.7 Example Symbols and Codes

N

= -

The codes for each symbol are now derived by following paths from the root to

the leaves. In essence, we have a trie because the code is the complete path and

each edge represents only part of the symbol. The codes in this example are shown
in Table 6.7.

To encode a character, we just replace it with the corresponding code, thus
BEADED becomes 01101100101010111010.

To decode a string of bits, we start at the beginning of the string and with a
pointer at the top of the code tree. When reading bits, we follow the appropriate
paths down the tree. Whenever we reach a leaf, we output the corresponding sym-
bol and reset the pointer to the root of the tree. Try it for yourself using the tree in
Figure 6.50 to confirm that 100001101011 decodes to CAFE.

Optimality
The average weighted code length is determined using

> (PI * code]ength(Sl-))‘ .
2F

For our example, the average weighted code lengthis (6 * 2 +5 * 2 +4 * 3 +1 *
1+2%2+2%3+3%*3)/25=61/25 = 2,44 bits,"! Huffman coding is optimal in
that there is no other assignment of codes to symbols that will have a shorter aver-
age weighted code length.

Static Veersus Dynamic Huffman Encoding

What is outlined in the previous section is static Fuffman encoding, in which a par-
ticular symbol has the same encoding throughout a file. We use some frequency
data to determine the codes, For example, in a compression program we might read
the file to be compressed twice: once to get the frequency distribution and a second

