Math 328: Project 1 Due Fri Feb 28

The purpose of this project is a more in-depth investigation of the Hamming codes. You will discover an elegant
decoding algorithm for the smallest non-trivial Hamming code and solve a well-known puzzle using the Hamming
code. You will also learn a little bit about about finite fields and consider Hamming codes over arbitrary finite
fields. Finally, there is an optional programming project if you are interested. You may work in pairs. Write
(type) a paper that addresses the following questions.

1. A Nice Decoding Algorithm for the Hamming Code

Recall that in the first day of class, we defined the binary [7,4, 3] Hamming code as

Ci = {(3?1,1}2,.1‘37374,,@5, 376,.’177) € Zg X5 =X+ T2+ Ty, T =1 + T3+ Tg,T7 =T + T3+ 374}

The textbook gives a general description of binary Hamming codes through parity check matrices, and the
[7,4,3] Hamming code can be obtained by letting » = 3 in the general definition. Consider the following
description of the Hamming code. Let Cy be the code whose parity check matrix H (according to the
standard definition of a parity check matrix) is the matrix whose columns are binary representations of
integers 1-7. (For example, binary representation of 1 is [0 0 1], and of 6 is [1 1 0])

(a) Show that the codes Cy and Cs are equivalent.

(b) Use the parity check matrix of Cs to devise a decoding algorithm that does not use cosets (or coset
leaders) and correctly decodes received vectors when they contain exactly one error.

2. Hamming Code and the Hat Puzzle

The binary Hamming code of length 7 has an interesting connection to a well-known puzzle: “The Hat
Problem”. The puzzle is as follows:

At a mathematical show with 7 players, each player receives a hat that is red or blue. The color of each
hat is determined by a coin toss. So the hat colors of players are determined randomly and independently.
Each person can see the other players’ hats but not his own. When the host signals, all players must
simultaneously guess the color of their own hats or pass. The group shares a $1 million prize if at least
one player guesses correctly and no players guess incorrectly.

No communication of any sort is allowed between the players during the show, but they are given the rules
in advance and they can have an initial strategy session before the game starts. What should they do to
maximize their chances?

(a) There is an obvious strategy with a 50% chance of winning. What is that?

(b) Is there a strategy with a higher chance of winning?

As you might predict, there is a strategy with a much higher chance of winning than 50%, and it makes
use of the [7,4,3] Hamming code. The fact that the Hamming code is perfect and 1-error correcting
makes this solution possible. In fact, that is the best possible solution for the puzzle. Describe how
the Hamming code can be used to solve this puzzle with a much higher winning probability. What is
that probability? Carefully explain and justify your algorithm. Why does it work?

3. Hamming Codes Over Arbitrary Finite Fields

Although we mostly consider codes over the binary alphabet in this course (and it is the most important
case), codes over other (larger) alphabets are also considered for both theoretical and practical purposes.
Sometimes it is desirable to have an alphabet with more than just two symbols. Since a field is needed to
consider linear codes (a field is needed to talk about a vector space), codes over arbitrary finite fields are
considered in coding theory. For example, the on-line table of best known linear codes (www.codetables.de)
contains the parameters of codes over the finite fields of order 2,3,4,5,7,8, and 9.

In this part of the project, you are going to describe Hamming codes over arbitrary finite fields. You may
not be very familiar with finite fields, but the following information about finite fields will be enough for
this purpose.

(a) For every prime power ¢ = p”, where p is a prime and 7 is a positive integer, there is a finite field with
¢ elements denoted by GF(q) or F,. (It is also referred to as “Galois field of order ¢”). For example,
there is a finite field with 4 elements. Moreover, the field GF(q) is unique up to isomorphism.

(b) The best known examples of finite fields are Z,,, integers mod p for a prime p. Note that Z4 is not a
field (so GF(4) # Z4).

(c) The finite field GF(q) contains Z, as a subfield (where ¢ is a power of p, say ¢ = p"). We say
that GF(q) is an extension of Z, (of degree n). For example, GF(4) contains the binary field as a
subfield. Give a description of the field GF(4) by writing addition and multiplication tables. Let
GF(4) = {0,1,a,a + 1}, where a* = a + 1.

Definition: Let r be an integer greater than 1. A g-ary Hamming code C is defined as the code whose
parity check matrix H contains all vectors of length r over GF'(q) whose first non-zero component is 1 as
its columns. (Note: This is according to the standard definition of the parity check matrix)

(a) What is the number of columns of H, i.e. what is the length of C?
(b) What is the dimension of C?

(¢) Show that the minimum distance of C' is 3. (Hint: Theorem 2.9.1 from the textbook also applies to
codes over other alphabets but remember the difference in the definition of a parity check matrix)

(d) Obtain the general version of the sphere packing bound for GF(q). (Give an argument to justify it)
Then show that C is perfect (hence all Hamming codes are perfect)

(e) Implement the Hamming code over Zs, and » = 2 in Magma (find a parity check matrix and a
generator matrix). Verify the code parameters. Encode the message m = (1,0,2,4) into a codeword
¢, then introduce an error at position 5 of ¢ by adding a 4 to that position. Then, come up with a
decoding algorithm for this (and general) Hamming code. Notice that there are two things to figure
out in decoding: The position of the error, and the magnitude of the error.

4. Bonus: Simulation Program for the Hat Puzzle

Write a program (in a language or computer algebra system of your choice) to simulate the Hat Puzzle
and its solution using the Hamming code. In every iteration, your program should generate a random
distribution of hat colors, then determine players’ response according to the best strategy obtained from
the Hamming code. Run the simulation a large number of times and report the percentage of times the
players win. Submit both the source code and the output. Report the result in a convenient, user-friendly
format.

