1. Let F be a finite field different from \mathbb{Z}_{2}. Show that the sum of all elements of F is 0 .
2. Let $a, b \in \mathbb{F}_{2^{n}}$, where n is odd. Show that $a^{2}+a b+b^{2}=0$ implies that $a=b=0$.
3. Let F be any field. If F^{*} is cyclic then show that F is finite.
4. Let α be a root of $x^{2}-2 \in \mathbb{Z}_{5}[x]$. Explain why $\mathbb{Z}_{5}(\alpha)$ must be the field $G F(25)$. List every element of $G F(25)$ as a linear combination of $\{1, \alpha\}$ over \mathbb{Z}_{5}. Is α a generator of the multiplicative group of $G F(25)^{*}$? If not, find one (such an element is called a primitive element) and call it β. Finally, for each $\gamma \in G F(25)$ of the form $a+b \alpha, a, b \in \mathbb{Z}_{5}$ (in your list above), determine the least $n \in \mathbb{N}$ such that $\gamma=\beta^{n}$. (The integer n with this property is called the discrete logarithm of γ to the base β, and denoted by $\log _{\beta} \gamma$)
5. Let $f(x) \in \mathbb{F}_{q}[x]$ be an irreducible polynomial of degree m.
(a) Show that $f(x)$ has a root α in $\mathbb{F}_{q^{m}}$. Also show that the roots are simple (not repeated) and given by $\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}$
(b) Let $\alpha \in \mathbb{F}_{q^{m}}$. The elements $\alpha, \alpha^{q}, \ldots, \alpha^{q^{m-1}}$ are called the conjugates of α over \mathbb{F}_{q} (or conjugates of α with respect to \mathbb{F}_{q}). Show that the conjugates of $\alpha \in \mathbb{F}_{q^{m}}^{*}$ with respect to \mathbb{F}_{q} have the same order in $\left(\mathbb{F}_{q^{m}}^{*}, \cdot\right)$.
(c) Let $f(x)=x^{4}+x+1 \in \mathbb{F}_{2}[x]$. Show that $f(x)$ is irreducible over \mathbb{F}_{2}. Let α be a root of $f(x)$. What is the smallest finite field that contains α ? Let \mathbb{F}_{q} be that finite field. Compute conjugates of α over \mathbb{F}_{2} and also over \mathbb{F}_{4}. What is the order of α in \mathbb{F}_{q} ? Is it a primitive element of \mathbb{F}_{q} ?
6. Show that $x^{p^{n}}-x$ is the product of all monic irreducible polynomials in $\mathbb{Z}_{p}[x]$ of degree d dividing n (This is the same as Problem 13 in Section 33)
7. Let q be a prime power and let n be a positive integer such that $(n, q)=1$.
(a) Show that the polynomial $x^{n}-1 \in \mathbb{F}_{q}[x]$ has distinct roots (no multiple roots)
(b) Find the smallest extension of \mathbb{F}_{q} that contains a primitive n-th root of unity.
(c) Let $q=3$ and $n=11$. Construct the smallest extension E of \mathbb{F}_{3} that contains an 11-th root of unity, and identify a primitive 11-th root of unity in E.
(d) Obtain the factorization $x^{11}-1$ over E, and use this factorization to obtain the factorization of $x^{11}-1$ over \mathbb{F}_{3}.
