Due Monday, Sep 16

This homework must be done individually. Remember to follow Math department's guidelines for homework. Please write your solutions neatly. Typesetting in LaTeX is appreciated and encouraged.

- 1. Let $G = \mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$
 - (a) Show that G is a group under usual addition of real numbers. Hence $\langle G, + \rangle \leq \langle \mathbb{R}, + \rangle$
 - (b) Show that $\langle G^*, \cdot \rangle$ is a group where $G^* = G \{0\}$ is the non-zero elements of G and \cdot is the usual multiplication of real numbers. Hence $\langle G^*, \cdot \rangle \leq \langle \mathbb{R}^*, \cdot \rangle$
- 2. Prove that if $\langle G, * \rangle$ is a group such that x * x = e for every $x \in G$, then G is an abelian (commutative) group. Is the converse of this statement true as well?
- 3. Given $(a,b) \in \mathbb{R}^2$, define $T_{a,b} : \mathbb{R}^2 \to \mathbb{R}^2$ by $T_{a,b}(x,y) = (x+a,y+b)$. Consider $G := \{T_{a,b} : a, b \in \mathbb{R}\}$ with the binary operation \circ of function composition. Is $\langle G, \circ \rangle$ a group? Is it a commutative group? What is the geometric interpretation of the map $T_{a,b}$? What is the geometric explanation for \circ being commutative or not?
- 4. Do problem 53 in section 5 of the textbook (page 58).