Foundations, Gift 1

Due Monday, Sep 9

This homework must be done individually. Remember to follow Math department's guidelines for collaboration on homework. Please write your solutions neatly. Typesetting in LaTeX is highly appreciated and encouraged.

- 1. Do problem 2 on page 37 of the textbook
- 2. Do problem 3 on page 37 of the textbook with the following additional parts. For each statement write out its converse, its contrapositive, and its negation and determine their truth values.
- 3. Do problem 4 on page 37 of the textbook
- 4. Do problem 8 on page 38 of the textbook, and give a specific example.
- 5. Do problem 9 on page 38 of the textbook.
- 6. Negating statements involving quantifiers. Given the following fact

Theorem 1. Let P(x) be a predicate in some universe of discourse. Then

- (a) ~ $(\forall x)P(x)$ is logically equivalent to $(\exists x)(\sim P(x))$
- (b) ~ $(\exists x)P(x)$ is logically equivalent to $(\forall x)(\sim P(x))$

write down negations of the following statements. Your negated statements should not contain the symbol \sim .

- (a) $(\forall x)[x > 0 \Rightarrow (\exists y)(y < 0 \land xy > 0)]$
- (b) For any $\epsilon > 0$, there exists $\delta > 0$ such that for all $a, b \in S$, if $|a b| < \delta$ then $|f(a) f(b)| < \epsilon$. (Here f is a real-valued function function whose domain contains S.)