1) Let \(a \) and \(b \) be positive constants. Show that if \(f \) is \(O(\log_a n) \) then \(f \) is also \(O(\log_b n) \).

2) Suppose the size of the input is doubled for an algorithm (going from \(n \) to \(2n \)). Explain how the number of operations change for the algorithm if its Big-O complexity is

a) \(O(n) \)
b) \(O(n^2) \)
c) \(O(\log(n)) \)
d) \(O(2^n) \)

What if the size of the input increases by 1 (going from \(n \) to \(n + 1 \))?

3) Rank the following functions according to how fast they grow as \(n \to \infty \): \(n \log^2(n) \), \(\log^{2019}(n) \), \(\sqrt{n} \), \(n^2 \), \(n! \), \(\sqrt{2}n \), \(nn \).

Determine the running time of the following program segments in Big-O notation. Take the size of the input as \(n \), unless otherwise stated.

4)
```java
double sum=0;
for(int i=0; i<1000000;i++)
   sum+=sqrt(i);
```

5)
```java
while(n>1)
{
   n=n/2;
   cout<<"This is a useless code";
}
```

6)
```java
int count=0;
for(i=0;i<n;i++)
{
   count++;
}
```

What happens if we take the size of the input as \(\log(n) \) as opposed to \(n \)?

7)
```java
for(i=0;i<n;i++)
{
   m=n;
   while(m>1)
   {
      m=m/2;
      cout<<m<<endl;
   }
}
```
8)
for(i=0;i<n;i++)
{
 for(j=0;j<n;j++)
 {
 count++;
 }
}

a) Considering the size of the input as n
b) Considering the size of the input as $\log(n)$

9)
for(i=0;i<n;i++)
{
 for(j=i;j<n;j++)
 {
 count++;
 }
}

10)
int i, j, k;

for(k=0;k<n;k++)
{
 for(i=0;i<n;i++)
 {
 j=n;
 while(j>1)
 {
 j=j/3;
 cout<<i*j*k<<endl;
 }
 }
}

for(i=0;i<n;i++)
{
 cout<<i*i<<endl;
}