Problem 7: Maximize a Function

Let $f(x)=e^{-A x^{2} / 2}$ where $A>0$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be n real numbers and define

$$
F(x)=f\left(x-a_{1}\right) f\left(x-a_{2}\right) \cdots f\left(x-a_{n}\right)
$$

Show that $F(x)$ attains its maximum at $x=\frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)$, the average of the set of numbers a_{1}, \ldots, a_{n}. Be sure to fully justify your answer.

As always, show your work, fully explain and justify your answer. A solution mainly obtained by computers or calculators will not be accepted.

Posting Date $4 / 3 / 2021$. Submit solutions to Noah Aydin, Mathematics Department, RBH 319 by e-mail or hard-copy by 5 pm on April 16, 2021. An email submission must be a single pdf file. Hard copy submissions must be dropped in the file holder at my office door (Hayes 319) and must include a time stamp.

