Solutions to Problem of the Week 1

Correct solutions were submitted by Stillian Ghaidarov and Ben Johnson.

Congratulations!

Here are 2 possible solutions to this problem (there are still other solutions)

Solution 1: Let $f(x) = \frac{\ln x}{x}$ defined on $(0, \infty)$. Then $f'(x) = \frac{1-\ln x}{x^2}$. We find that f' > 0 on (0, e) and f' < 0 on (e, ∞) . Therefore, f is increasing on (0, e) and decreasing on (e, ∞) and f has a global maximum at x = e. Hence, $f(e) > f(\pi)$, i.e., $\frac{\ln e}{e} > \frac{\ln \pi}{\pi} \implies \pi \ln e > e \ln \pi \implies \ln e^{\pi} > \ln \pi^{e} \implies e^{\pi} > \pi^{e}$ (since ln is 1-1). \Box

Solution 2: Let f(x) = x and $g(x) = 1 + \ln x$, then f(1) = g(1) = 1. $f'(x) = 1 > \frac{1}{x} = g'(x)$ for x > 1. Therefore, f(x) > g(x) for x > 1.

Since $\ln \pi > \ln e = 1$ (this is true since \ln is an increasing function and $\pi > e$), we have $f(\ln \pi) > g(\ln \pi)$, i.e., $\ln \pi > 1 + \ln \ln \pi = \ln e + \ln \ln \pi = \ln(e \ln \pi)$ $\implies \pi > e \ln \pi$ (since $\ln n = 1 + \ln \ln \pi = \ln(e \ln \pi)$) $\implies \pi \ln e > e \ln \pi$ $\implies \ln(e^{\pi}) > \ln(\pi^{e})$ $\implies e^{\pi} > \pi^{e}$