Solutions to Problem of the Week 1

Correct solutions were submitted by Stillian Ghaidarov and Ben Johnson.

Congratulations!

Here are 2 possible solutions to this problem (there are still other solutions)

Solution 1: Let $f(x)=\frac{\ln x}{x}$ defined on $(0, \infty)$. Then $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}$. We find that $f^{\prime}>0$ on $(0, e)$ and $f^{\prime}<0$ on (e, ∞). Therefore, f is increasing on $(0, e)$ and decreasing on (e, ∞) and f has a global maximum at $x=e$. Hence, $f(e)>f(\pi)$, i.e., $\frac{\ln e}{e}>\frac{\ln \pi}{\pi} \Longrightarrow \pi \ln e>e \ln \pi \Longrightarrow \ln e^{\pi}>\ln \pi^{e} \Longrightarrow e^{\pi}>\pi^{e}($ since \ln is $1-1)$.

Solution 2: Let $f(x)=x$ and $g(x)=1+\ln x$, then $f(1)=g(1)=1$. $f^{\prime}(x)=1>\frac{1}{x}=g^{\prime}(x)$ for $x>1$. Therefore, $f(x)>g(x)$ for $x>1$.

Since $\ln \pi>\ln e=1$ (this is true since \ln is an increasing function and $\pi>e$), we have $f(\ln \pi)>g(\ln \pi)$, i.e.,
$\ln \pi>1+\ln \ln \pi=\ln e+\ln \ln \pi=\ln (e \ln \pi)$
$\Longrightarrow \pi>e \ln \pi($ since \ln is $1-1)$
$\Longrightarrow \pi \ln e>e \ln \pi$
$\Longrightarrow \ln \left(e^{\pi}\right)>\ln \left(\pi^{e}\right)$
$\Longrightarrow e^{\pi}>\pi^{e}$

