Problem 2: Maximizing an Integral

Let C be the set of all continuous real-valued functions $f:[0,1] \rightarrow \mathbb{R}$ satisfying

$$
|f(x)-f(y)| \leq|x-y|, \quad 0 \leq x, y \leq 1, \quad f(0)=0 .
$$

Let $\phi: C \rightarrow \mathbb{R}$ be defined by $\phi(f)=\int_{0}^{1}\left(f(x)^{2}-f(x)\right) d x$. Show that ϕ attains its maximum at some element of C.

As always, show your work, fully explain and justify your answer. A solution mainly obtained by computers or calculators will not be accepted.

Posting Date 9/5/2020. Submit solutions to Noah Aydin, Mathematics Department, RBH 319 by e-mail or hard-copy by 4 pm on Sep 18, 2020. An email submission must be a single pdf file. Hard copy submissions must be dropped in the file holder at my office door (Hayes 319) and must include a time stamp.

