Problem 2: Triangular Numbers

Triangular numbers are so named because they can be arranged in a triangular configuration. The first few triangular numbers are $1,3,6,10,15,21,28,36, \ldots$
Consider the following pattern

$$
\begin{aligned}
& 1=1 \\
& 1+5=6 \\
& 1+7+7=15 \\
& 1+9+9+9=28 \\
& 1+11+11+11+11=45
\end{aligned}
$$

This is a pattern that gives every other triangular number (the first, third, fifth, ...) Find a closed formula for the $n^{\text {th }}$ term of this sequence. Then find a similar pattern for even indexed triangular numbers (second, fourth, sixth, ...) and find a closed formula for the $n^{\text {th }}$ term of that sequence.

As always, show your work, fully explain and justify your answer.

