Exploring Conjugation with GAP

Two elements g and g' in a group G are said to be conjugate if $g = h * g' * h^{-1}$ (or $g' = h * g * h^{-1}$ for some h in G. For example, if you execute the code below you will find that the elements $g_{l} = (1, 2, 3, 4)(7, 8, 9)$ and $g_{2} = (1, 4, 3, 2)(5, 7, 8)$ are conjugate in S_{10} .

gap> G := SymmetricGroup(10); gap> g1 := (1, 2, 3, 4)(7, 8, 9); h := (2,4)(5,9); $gap>h * g1 * h^{(-1)};$

In this lab we will use **gap** to explore the relationship between an element and its conjugate. In particular, we will explore such questions as: Given any two elements gl and g2 in a group, can you always find an element h such that $g2 = h * g1 * h^{-1}$? If not, then when are two elements in a permutation group conjugate? Our approach, initially, will be experimental; we will make conjectures based on **gap**'s output. For homework you will then be asked to provide rigorous proofs of your findings.

Question 1. Let $G = S_{10}$ and assume h1, h2, h3, h4, and h5 are defined to be:

gap > h1: = (1, 2, 3);gap> h2: = (2, 3)(5, 4, 7); gap > h3: = (1, 2, 3)(8, 9, 10);gap> h4: = (1, 2, 4)(5, 9);gap > h5: = (4, 6, 7, 9);

Complete the tables that follow.

g1	(1, 2, 3, 4)(7, 8, 9)
h1*g1*h1 ⁻¹	
h2*g1*h2 ⁻¹	
h3*g1*h3 ⁻¹	
h4*g1*h4 ⁻¹	
h5*g1*h5 ⁻¹	

(1, 4, 3, 2)(5, 7, 8)

g3	(1, 3)(7, 8, 9)
h1*g3*h1 ⁻¹	
h2*g3*h2 ⁻¹	
h3*g3*h3 ⁻¹	
h4*g3*h4 ⁻¹	
h5*g3*h5 ⁻¹	

g4	(1,7)
h1*g4*h1 ⁻¹	
h2*g4*h2 ⁻¹	
h3*g4*h3 ⁻¹	
h4*g4*h4 ⁻¹	
h5*g4*h5 ⁻¹	

What does the output suggest? Would you expect the permutations $g_5 = (1, 2, 5, 6)$ and g6 = (2, 3)(4, 5) to be conjugate? Why or why not?

Question 2. GAP will actually allow you to look at all of the elements in S_{10} that are conjugate to any given element. For example, to get the list of conjugates of g5 you execute the following. (Be patient! This computation will likely take a while.)

```
gap> g5 := (1, 2, 5, 6);
gap> c:= ConjugacyClass(G, g5);
gap> Elements(c);
```

Note: The command "ConjugacyClass" refers to the fact that conjugation is an equivalence relation on the set of group elements. More specifically, we say that $[g] = \{h*g*h^{-1} | h \in G\}$ is the equivalence class or *conjugacy class* of g.

What does the output of this code seem to indicate? What can you say about the cycle structure of g5 compared to the cycle structure of each of its conjugates?

Question 3. Use **gap**'s "Size" command to determine whether or not every four cycle in S_{10} is conjugate to *g5*. Explain your reasoning.

Question 4. To summarize your findings, provide a *conjecture* about the relationship between a permutation $g \in S_{10}$ and any conjugate $h^*g^*h^{-1}$, where $h \in S_{10}$. Your homework assignment for next lesson is to prove (or disprove) this conjecture!

Conjecture:

Question 5. How many distinct conjugacy classes does S₄ have?

Question 6. How many distinct conjugacy classes does S₅ have?

Returning to the Rubik's Cube...

Recall that the generators of the group of configurations of the Rubik's Cube were described as:

F:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);R := (25, 27, 32, 30) (26, 29, 31, 28) (3, 38, 43, 19) (5, 36, 45, 21) (8, 33, 48, 24);U:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);B := (33, 35, 40, 38) (34, 37, 39, 36) (3, 9, 46, 32) (2, 12, 47, 29) (1, 14, 48, 27);D:=(41,43,48,46)(42,45,47,44)(22,30,38,14)(23,31,39,15)(24,32,40,16);L:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);

Are you thinking that these generators must all belong to the same conjugacy class? You should be!

Question 7. Find the permutation *h* in the cube group having the property that $U = h^*F^*h^{-1}$. That is, prove that U and F are indeed conjugate. Hint: You'll want to think about this problem from a geometric point of view. Then use **gap** to prove algebraically that your candidate for h works. The diagram below might be helpful.

			1	2	3					
			4	Up	5					
			6	7	8					
9	10	11	17	18	19	25	26	27	33	34
12	Left	13	20	Front	21	28	Right	29	36	Back
14	15	16	22	23	24	30	31	32	38	39
			41	42	43					
			44	Down	45					
			46	47	48					

35

37

40

You will need (want?) to read in the file "rubik.gap" before defining the cube group. Recall that this file served to define the generators given above.

gap> Read("rubik.gap");

gap> G:=SymmetricGroup(48);

gap> cube:=Subgroup(G, [F, B, L, R, U, D]);

Question 8. Provide a geometric description of all elements in the conjugacy class of $(R^2D^2)^3 = (21, 36)(23, 39)(28, 29)(42, 47).$