
1

This is the first of several lectures which accompany the textbook Data
Structures and Other Objects Using C++. Each lecture chooses one
topic from the book and expands on that topic - adding examples and
further material to reinforce the students' understanding.

This first lecture covers the topic of Preconditions and Postconditions
from Chapter 1.

❐ An important topic:
preconditions and
postconditions.

❐ They are a method of
specifying what a
function accomplishes.

Preconditions and Postconditions

Data Structures
and Other Objects
Using C++

2

Throughout the book, preconditions and postconditions are used to
specify precisely what a function does. However, as we will see, a
precondition/postcondition specification does not indicate anything
about how a function accomplishes its work. This separation between
what a function does and how the function works is extremely important
- particularly for large programs which are written by a team of
programmers.

Preconditions and Postconditions

Frequently a programmer must communicate
precisely what a function accomplishes,
without any indication of how the function
does its work.

Can you think of a situationCan you think of a situation
where this would occur ?where this would occur ?

3

As an example, suppose that you are the head of a programming team.
Your team is writing a large piece of software, perhaps with millions of
lines of code. Certainly nobody can keep all those lines of code in their
head at once (not even me!). So, the large problem is broken into
smaller problems. Those smaller problems might be broken into still
smaller problems, and so on, until you reach manageable problems.

Each of the manageable problems can be solved by a function - but
you won't be writing all these functions. The functions are written by
members of your team.

As each team member is given a function to write, you will specify the
requirements of the function by indicating what the function must
accomplish. But most of the details about how a function works will be
left up to the individual programmers.

Example

❐ You are the head of a
programming team
and you want one of
your programmers to
write a function for
part of a project.

HERE ARE
THE REQUIREMENTS

FOR A FUNCTION THAT I
WANT YOU TO

WRITE.

I DON'T CARE
WHAT METHOD THE

FUNCTION USES,
AS LONG AS THESE

REQUIREMENTS
ARE MET.

4

There are many ways to specify the requirements for a function. In this
class, and in the textbook, we will use a pair of statements for each
function, called the function's precondition and postcondition.

As we will see, the two statements work together: The precondition
indicates what must be true before the function is called. The
postcondition indicates what will be true when the function finishes its
work.

An example can clarify the meanings...

What are Preconditions and
Postconditions?

❐ One way to specify such requirements is
with a pair of statements about the function.

❐ The precondition statement indicates what
must be true before the function is called.

❐ The postcondition statement indicates what
will be true when the function finishes its
work.

5

This is an example of a small function which simply writes the square
root of a number. The number is given as a parameter to the function,
called x. For example, if we call write_sqrt(9), then we would expect
the function to print 3 (which is the square root of 9).

What needs to be true in order for this function to successfully carry out
its work? Since negative numbers don't have a square root, we need to
ensure that the argument, x, is not negative. This requirement is
expressed in the precondition:

 Precondition: x >= 0.

The postcondition is simply a statement expressing what work has been
accomplished by the function. This work might involve reading or
writing data, changing the values of variable parameters, or other
actions.

Notice that the information shown on this slide is enough for you to use
the function. You don't need to know what occurs in the function body.

Example

void write_sqrt(double x)

// Precondition: x >= 0.
// Postcondition: The square root of x has
// been written to the standard output.

 ...

6

The precondition and postcondition are not actually part of the program.
It is common to place the precondition/postcondition pair in a comment
immediately after the function's parameter list.

Example

void write_sqrt(double x)

// Precondition: x >= 0.
// Postcondition: The square root of x has
// been written to the standard output.

 ...
}

❐ The precondition and
postcondition appear as
comments in your program.

❐ They are usually placed after the
function’s parameter list.

7

Here again you see the precondition of the example. The right way to
read this is as a warning that says: "Watch Out! This function requires
that x is greater than or equal to zero. If you violate this condition, then
the results are totally unpredictable."

Example

void write_sqrt(double x)

// Precondition: x >= 0.
// Postcondition: The square root of x has
// been written to the standard output.

 ...
}

❐ In this example, the precondition
requires that

 x >= 0
 be true whenever the function is

called.

8

So, here are three possible function calls. Two of the calls meet the
precondition and have predictable results. In one of the calls, the
precondition fails, and the result of the function call is unpredictable.

Which function call is the trouble maker?

Example

write_sqrt(-10);
write_sqrt(0);
write_sqrt(5.6);

Which of these function callsWhich of these function calls
meet the precondition ?meet the precondition ?

9

The second and third function calls are fine. The second call has an
argument of zero, but that's acceptable since the precondition only
requires that x is greater than or equal to zero.

Example

Which of these function callsWhich of these function calls
meet the precondition ?meet the precondition ?

The second and third calls are fine, since
the argument is greater than or equal to zero.

write_sqrt(-10);
write_sqrt(0);
write_sqrt(5.6);

10

But the first function call causes trouble. This function call, which
violates the precondition, must never be made by a program. In a few
minutes you'll see exactly how much trouble can arise from such a
violation. For now, just take my word, do not violate preconditions.

Example

Which of these function callsWhich of these function calls
meet the precondition ?meet the precondition ?

But the first call violates the precondition,
since the argument is less than zero.

write_sqrt(-10);
write_sqrt(0);
write_sqrt(5.6);

11

Before we continue, take one more quick look at the postcondition: As
you know, it states what the function will accomplish between the time
the function starts executing and the time the function finishes
executing.

One more important point which isn't written on the slide: Provided that
the precondition is valid, then the function is also required to finish
executing. Infinite loops are not permitted, and neither is crashing the
computer.

Example

void write_sqrt(double x)

// Precondition: x >= 0.
// Postcondition: The square root of x has
// been written to the standard output.

 ...
}

❐ The postcondition always indicates
what work the function has
accomplished. In this case, when
the function returns the square root
of x has been written.

12

Here's one more example, which demonstrates how you can use
ordinary English to express the precondition and postcondition.

The writing of these expressions should be clear and concise. The goal
is to communicate to another programmer two things:

1. What must be true in order for that programmer to use the function;
and

2. What work the function will accomplish.

In this example, the "work accomplished" is nothing more than
computing a value which the function returns. Again, notice that there
is enough information for you to use the function without knowing a
thing about the implementation details.

Another Example

bool is_vowel(char letter)
// Precondition: letter is an uppercase or
// lowercase letter (in the range 'A' ... 'Z' or 'a' ... 'z') .
// Postcondition: The value returned by the
// function is true if Letter is a vowel;
// otherwise the value returned by the function is
// false.

 ...

13

Another quick quiz: What values will these function calls return? If you
think this is a "trick question" you are right. . .

Another Example

is_vowel('A');
is_vowel(' Z');
is_vowel('?');

What values will be returnedWhat values will be returned
by these function calls ?by these function calls ?

14

The first two function calls are fine, returning true (since 'A' is a vowel)
and false since 'Z' is not a vowel.

But the third function call might return true, or it might return false,
nobody really knows since the precondition has been violated.

In fact, the situation is worse than that. Recall that I said to never
violate a precondition. The reason is that the result of violating a
precondition is totally unpredictable, including the possibility of . . .

Another Example

is_vowel('A');
is_vowel(' Z');
is_vowel('?');

What values will be returnedWhat values will be returned
by these function calls ?by these function calls ? true

false

Nobody knows, because the
precondition has been violated.

15

. . . crashing the computer.

Now, if I had written the is_vowel function, and the argument was a
question mark, I would try to not crash the machine, I would try to not
destroy files on the hard drive, I would try my best to not cause power
outages across New York. But you never know for sure.

Another Example

is_vowel('?');

What values will be returnedWhat values will be returned
by these function calls ?by these function calls ?

Violating the precondition
might even crash the computer.

16

So, let's look at the use of preconditions and postconditions in a typical
situation. The programmer who calls the function is responsible for
ensuring that the precondition is valid when the function is called.

If she fails in this responsibility, then all bets are off. There is no telling
what might occur.

Always make sure the
precondition is valid . . .

❐ The programmer who
calls the function is
responsible for
ensuring that the
precondition is valid
when the function is
called.

AT THIS POINT, MY
PROGRAM CALLS YOUR
FUNCTION, AND I MAKE

SURE THAT THE
PRECONDITION IS

VALID.

17

On the other hand, if she keeps her end of the bargain, and calls the
function with a valid postcondition, then the function has a responsibility
of its own.

The function must complete its execution (no infinite loops), and when
the function finishes, the postcondition will be true.

In some ways, you can think of the precondition/postcondition
statements as a contract between two programmers: One programmer
(who uses the function) is guaranteeing that she will make sure that the
precondition is valid before the function is called. The other
programmer (who writes the function) is going to bank on the
precondition being true. This other programmer is responsible for
making sure that the postcondition becomes true when the function
finishes execution.

. . . so the postcondition becomes
true at the function’s end.

❐ The programmer who
writes the function counts
on the precondition being
valid, and ensures that the
postcondition becomes
true at the function’s end.

THEN MY FUNCTION
WILL EXECUTE, AND WHEN

IT IS DONE, THE
POSTCONDITION WILL BE

TRUE.
I GUARANTEE IT.

18

Time for another quiz . . .

A Quiz

Suppose that you call a
function, and you neglect to
make sure that the
precondition is valid.
Who is responsible if this
inadvertently causes a 40-
day flood or other disaster?

① You

② The programmer who
wrote that torrential
function

③ Noah

19

Somehow I think this quiz was too easy.

A Quiz

Suppose that you call a
function, and you neglect to
make sure that the
precondition is valid.
Who is responsible if this
inadvertently causes a 40-
day flood or other disaster?

① You

 The programmer who
calls a function is
responsible for
ensuring that the
precondition is valid.

20

Well, there's no way of getting around it: The programmer who calls a
function is responsible for making sure the precondition is valid.
However, when you are writing a function with a precondition, you
should make every attempt to try to detect when a precondition is
violated. Such detections make things easier on other programmers -
easier for them to debug, for example.

On the other hand, careful
programmers also follow these rules:

❐ When you write a function, you should
make every effort to detect when a
precondition has been violated.

❐ If you detect that a precondition has been
violated, then print an error message and
halt the program.

21

And such detections can also avoid disasters.

On the other hand, careful
programmers also follow these rules:

❐ When you write a function, you should
make every effort to detect when a
precondition has been violated.

❐ If you detect that a precondition has been
violated, then print an error message and
halt the program...

❐ ...rather than causing

 a disaster.

22

Here's an example of how you would write a friendly function which
detects when its precondition is violated. There is no need for anything
fancy when the precondition fails: just print an informative error
message and halt the program. In this example, I have used the C++
assert function, which has a logical expression as its argument. If the
expression is true, then the assert function does nothing. But if the
expression is false, the assert function prints a useful message and
halts the program. You can read about the full details of the assert
function in Section 1.1 of the text.

Example

void write_sqrt(double x)
// Precondition: x >= 0.
// Postcondition: The square root of x has
// been written to the standard output.
{
 assert(x >= 0);

 ... ❐ The assert function
(described in Section 1.1) is
useful for detecting violations
of a precondition.

23

Here are the primary advantages to using a method such as
preconditions/postconditions to specify what a function accomplishes
without giving details of how the function works.

One of the important advantages has to do with reimplementations.
Often a programmer will think of a better method to accomplish some
computation. If the computation is part of a function that includes a
precondition/postcondition pair, then the function can be rewritten and
the new, better function used instead. Any program which uses the
function (and which only depends on the precondition/postcondition
contract) can use the new improved function with no other changes.

Advantages of Using
Preconditions and Postconditions

❐ Succinctly describes the behavior of a
function...

❐ ... without cluttering up your thinking with
details of how the function works.

❐ At a later point, you may reimplement the
function in a new way ...

❐ ... but programs (which only depend on the
precondition/postcondition) will still work
with no changes.

24

Precondition
❐ The programmer who calls

a function ensures that the
precondition is valid.

❐ The programmer who
writes a function can bank
on the precondition being
true when the function
begins execution.

Postcondition
❐ The programmer

who writes a
function ensures
that the
postcondition is
true when the
function finishes
executing.

Summary

25

THE END

Presentation copyright 1997, Addison Wesley Longman
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc.) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc., Archive Arts, Cartesia Software, Image Club
Graphics Inc., One Mile Up Inc., TechPool Studios, Totem Graphics Inc.).

Students and instructors who use Data Structures and Other Objects Using C++ are
welcome to use this presentation however they see fit, so long as this copyright notice
remains intact.

