
1

1

❐ Chapter 9 introduces the technique
of recursive programming.

❐ As you have seen, recursive
programming involves spotting
smaller occurrences of a problem
within the problem itself.

❐ This presentation gives an
additional example, which is not
in the book.

Recursive Thinking

Data Structures
and Other Objects
Using C++

2

A Car Object

❐ To start the example,
think about your favorite
family car

3

A Car Object

❐ To start the example,
think about your favorite
family car

4

A Car Object

❐ To start the example,
think about your favorite
family car

5

A Car Object

❐ To start the example,
think about your favorite
family car

6

A Car Object

❐ To start the example,
think about your favorite
family car

❐ Imagine that the car is
controlled by a radio
signal from a computer

2

7

A Car Class

class Car
{
public:
 . . .
};

❐ To start the example,
think about your favorite
family car

❐ Imagine that the car is
controlled by a radio
signal from a computer

❐ The radio signals are
generated by activating
member functions of a
Car object

8

class Car
{
public:
 Car(int car_number);
 void move();
 void turn_around();
 bool is_blocked;
private:
 { We don't need to know the private fields! }
 . . .
};

Member Functions for the Car Class

9

int main()
{
 Car racer(7);

 . . .

The Constructor

When we declare a Car

and activate the
constructor, the computer
makes a radio link with a
car that has a particular
number.

10

int main()
{
 Car racer(7);

 racer.turn_around();
 . . .

The turn_around Function

When we activate
turn_around, the computer
signals the car to turn 180
degrees.

11

int main()
{
 Car racer(7);

 racer.turn_around();
 racer.move();
 . . .

The move Function

When we activate move,
the computer signals the
car to move forward one
foot.

12

int main()
{
 Car racer(7);

 racer.turn_around();
 racer.move();
 . . .

The move Function

When we activate move,
the computer signals the
car to move forward one
foot.

3

13

int main()
{
 Car racer(7);

 racer.turn_around();
 racer.move();
 if (racer.is_blocked())
 cout << "Cannot move!";
 . . .

The is_blocked() Function

The is_blocked member
function detects barriers.

14

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

15

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

16

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

17

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

18

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

❐ ...and returned to its original location, facing the
opposite way.

4

19

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

❐ ...and returned to its original location, facing the
opposite way.

20

Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

❐ ...and returned to its original location, facing the
opposite way.

void ricochet(Car& moving_car);

21

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

void ricochet(Car& moving_car);

22

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

moving_car.move();
. . .

23

moving_car.move();
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
This makes the problem a bit
smaller. For example, if the
car started 100 feet from the
barrier...

100 ft.

24

moving_car.move();
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
This makes the problem a bit
smaller. For example, if the
car started 100 feet from the
barrier... then after activating
move once, the distance is
only 99 feet.

99 ft.

5

25

moving_car.move();
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
We now have a
smaller version of
the same problem
that we started with.

99 ft.

26

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
Make a recursive
call to solve the
smaller problem.

99 ft.

27

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

99 ft.

28

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

29

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

30

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

6

31

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

32

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

33

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

34

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

35

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

36

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

99 ft.

7

37

moving_car.move();
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
What is the last step
that's needed to return
to our original
location ?

99 ft.

38

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
What is the last step
that's needed to return
to our original
location ?

100 ft.

39

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

This recursive
function follows a
common pattern that
you should recognize.

40

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

When the problem is
simple, solve it with
no recursive call.
This is the base case.

41

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

When the problem is
more complex, start by
doing work to create a
smaller version of the
same problem...

42

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

...use a recursive call to
completely solve the
smaller problem...

8

43

moving_car.move();
ricochet(moving_car);
moving_car.move();

Pseudocode for ricochet

❶ if moving_car.is_blocked(), then the car is already at
the barrier. In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

...and finally do any
work that's needed to
complete the solution
of the original
problem..

44

Implementation of ricochet

void ricochet(Car& moving_car)
{
 if (moving_car.is_blocked())
 moving_car.turn_around(); // Base case
 else
 { // Recursive pattern
 moving_car.move();
 ricochet(moving_car);
 moving_car.move();
 }
}

Look for this
pattern in the other
examples of
Chapter 9.

45

An Exercise

Can you write ricochet as a
new member function of the
Car class, instead of a
separate function?

You have 2 minutes to
write the implementation.

void Car::ricochet()
{
 . . .

46

An Exercise

void Car::ricochet()
{
 if (is_blocked())
 turn_around(); // Base case
 else
 { // Recursive pattern
 move();
 ricochet();
 move();
 }
}

One solution:

47

THE END

Presentation copyright 1997 Addison Wesley Longman,
For use with Data Structures and Other Objects Using C++
by Michael Main and Walter Savitch.

Some artwork in the presentation is used with permission from Presentation Task Force
(copyright New Vision Technologies Inc) and Corel Gallery Clipart Catalog (copyright
Corel Corporation, 3G Graphics Inc, Archive Arts, Cartesia Software, Image Club
Graphics Inc, One Mile Up Inc, TechPool Studios, Totem Graphics Inc).

Students and instructors who use Data Structures and Other Objects Using C++ are welcome
to use this presentation however they see fit, so long as this copyright notice remains
intact.

