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❐ Chapter 9 introduces the technique
of recursive programming.

❐ As you have seen, recursive
programming involves spotting
smaller occurrences of a problem
within the problem itself.

❐ This presentation gives an
additional example, which is not
in the book.
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A Car Object

❐ To start the example,
think about your favorite
family car
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A Car Object

❐ To start the example,
think about your favorite
family car

❐ Imagine that the car is
controlled by a radio
signal from a computer
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A Car Class

class Car
{
public:
            . . .
};

❐ To start the example,
think about your favorite
family car

❐ Imagine that the car is
controlled by a radio
signal from a computer

❐ The radio signals are
generated by activating
member functions of a
Car object
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class Car
{
public:
            Car(int car_number);
            void move( );
            void turn_around( );
            bool is_blocked;
private:
            { We don't need to know the private fields! }
             . . .
};

Member Functions for the Car Class
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int main( )
{
   Car racer(7);

   . . .

The Constructor

When we declare a Car

and activate the
constructor, the computer
makes a radio link with a
car that has a particular
number.
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int main( )
{
   Car racer(7);

   racer.turn_around( );
   . . .

The turn_around Function

When we activate
turn_around, the computer
signals the car to turn 180
degrees.
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int main( )
{
   Car racer(7);

   racer.turn_around( );
   racer.move( );
   . . .

The move Function

When we activate move,
the computer signals the
car to move forward one
foot.
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int main( )
{
   Car racer(7);

   racer.turn_around( );
   racer.move( );
   . . .

The move Function

When we activate move,
the computer signals the
car to move forward one
foot.
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int main( )
{
   Car racer(7);

   racer.turn_around( );
   racer.move( );
   if (racer.is_blocked( ) )
     cout << "Cannot move!";
   . . .

The is_blocked( ) Function

The is_blocked member
function detects barriers.
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Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...
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Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

❐ ...and returned to its original location, facing the
opposite way.
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Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

❐ ...and returned to its original location, facing the
opposite way.
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Your Mission

❐ Write a function which will move a Car forward until it
reaches a barrier...

❐ ...then the car is turned around...

❐ ...and returned to its original location, facing the
opposite way.

void  ricochet(Car& moving_car);
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Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

void  ricochet(Car& moving_car);
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Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

moving_car.move( );
. . .
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moving_car.move( );
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
This makes the problem a bit
smaller.  For example, if the
car started 100 feet from the
barrier...

100 ft.
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moving_car.move( );
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
This makes the problem a bit
smaller.  For example, if the
car started 100 feet from the
barrier... then after activating
move once, the distance is
only 99 feet.

99 ft.
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moving_car.move( );
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
We now have a
smaller version of
the same problem
that we started with.

99 ft.
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moving_car.move( );
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
Make a recursive
call to solve the
smaller problem.

99 ft.
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moving_car.move( );
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

99 ft.
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start with:

void ricochet(Car& moving_car);
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smaller problem.
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Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.
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moving_car.move( );
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.
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moving_car.move( );
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.
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Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.
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❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.
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moving_car.move( );
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Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.
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moving_car.move( );
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
The recursive call
will solve the
smaller problem.

99 ft.
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moving_car.move( );
ricochet(moving_car);
. . .

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
What is the last step
that's needed to return
to our original
location ?

99 ft.
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moving_car.move( );
ricochet(moving_car);
moving_car.move( );

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);
What is the last step
that's needed to return
to our original
location ?

100 ft.
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moving_car.move( );
ricochet(moving_car);
moving_car.move( );

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

This recursive
function follows a
common pattern that
you should recognize.
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moving_car.move( );
ricochet(moving_car);
moving_car.move( );

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

When the problem is
simple, solve it with
no recursive call.
This is the base case.
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moving_car.move( );
ricochet(moving_car);
moving_car.move( );

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

When the problem is
more complex, start by
doing work to create a
smaller version of the
same problem...
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moving_car.move( );
ricochet(moving_car);
moving_car.move( );

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

...use a recursive call to
completely solve the
smaller problem...
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moving_car.move( );
ricochet(moving_car);
moving_car.move( );

Pseudocode for ricochet

❶ if moving_car.is_blocked( ), then the car is already at
the barrier.  In this case, just turn the car around.

❷ Otherwise, the car has not yet reached the barrier, so
start with:

void ricochet(Car& moving_car);

...and finally do any
work that's needed to
complete the solution
of the original
problem..
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Implementation of ricochet

void ricochet(Car& moving_car)
{
    if (moving_car.is_blocked( ))
       moving_car.turn_around( ); // Base case
    else
    {      // Recursive pattern
           moving_car.move( );
           ricochet(moving_car);
           moving_car.move( );
     }
}

Look for this
pattern in the other
examples of
Chapter 9.

45

An Exercise

Can you write ricochet as a
new member function of the
Car class, instead of a
separate function?

You have 2 minutes to
write the implementation.

void Car::ricochet( )
{
   . . .
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An Exercise

void Car::ricochet( )
{
    if (is_blocked( ))
       turn_around( ); // Base case
    else
    {      // Recursive pattern
           move( );
           ricochet( );
           move( );
     }
}

One solution:
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THE  END
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