Math 112.01 - Quiz 4 and Solutions

1) Find the area of the region enclosed by $x=6-y^{2}$ and $y=x$.

First sketch the region:

We see that integrating with respect to y is more convenient in this problem. Find the (y-coordinates) points of intersection: $y=-3$ and $y=2$. Then the area is given by the integral:

$$
\int_{-3}^{2}\left(6-y^{2}-y\right) d y=\frac{125}{6}
$$

2) Find the length of the arc $y=2 x^{\frac{3}{2}}, \quad 0 \leq x \leq 1$

Remember the arc length formula: $\int_{0}^{1} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x$
Here, $y^{\prime}=3 x^{\frac{1}{2}}$ so $\left(y^{\prime}\right)^{2}=9 x$. So we need to compute $\int_{0}^{1} \sqrt{1+9 x} d x$.
We make the substitution $u=1+9 x$, then

$$
\int_{0}^{1} \sqrt{1+9 x} d x=\frac{1}{9} \int_{9}^{10} u^{\frac{1}{2}} d u=\frac{2}{27}\left(10^{\frac{3}{2}}-9^{\frac{3}{2}}\right)
$$

