Math 112.01 - Quiz 2 and Solutions

1) Evaluate
$$\int x \tan(x^2) dx$$

Solution: Let $u=x^2$, then du=2xdx and $\frac{du}{2}=xdx$. Therefore, $\int x \tan(x^2) dx = \frac{1}{2} \int \tan(u) du$. To evaluate the latter integral we first write $\frac{1}{2} \int \tan(u) du = \frac{1}{2} \int \frac{\sin(u)}{\cos(u)} du$ then make another substitution: $v=\cos(u)$, so $dv=-\sin(u)du$. We then obtain

$$\frac{1}{2} \int \frac{\sin(u)}{\cos(u)} du = \frac{-1}{2} \int \frac{dv}{v} = \frac{-1}{2} \ln|v| + C = \frac{-1}{2} \ln|\cos(u)| + C = \frac{-1}{2} \ln|\cos(x^2)| + C$$

2) Evaluate
$$\int_{e}^{e^2} \frac{dx}{x \ln^2(x)}$$

Solution: Let $u = \ln(x)$, then $du = \frac{dx}{x}$. Also note that the limits of integration should be changed to from $u(e) = \ln(e) = 1$ to $u(e^2) = \ln(e^2) = 2\ln(e) = 2$. So

$$\int_{e}^{e^{2}} \frac{dx}{x \ln^{2}(x)} = \int_{1}^{2} \frac{du}{u^{2}} = \frac{-1}{u} \Big|_{1}^{2} = -(\frac{1}{2} - 1) = \frac{1}{2}$$