
The Fundamental Theorem of Calculus

The Area Function

1. Given below is the graph of f(x). If $A_f(x) = \int_0^x f(t) dt$

- a. Determine on which interval ${\cal A}_f$ is increasing.
- b. Determine on which interval A_f is decreasing.
- c. Determine on which interval ${\cal A}_f$ is concave up.
- d. Determine on which interval ${\cal A}_f$ is concave down.

The Fundamental Theorem of Calculus

Fundamental Theorem Part I

1. Let $f(x) = 2xe^{x^2}$ and $A_f(x) = \int_0^x f(t) dt$. Find the symbolic formula for A_f .

2. Let $f(x) = x^2 + x$ and $A_f(x) = \int_1^x f(t) dt$. Find the symbolic formula for A_f .

The Fundamental Theorem of Calculus

Fundamental Theorem Part I

Evaluate each of the following

$$1. \ \frac{d}{dx} \int_0^x \sqrt{t^2 + 1} \, dt$$

$$2. \ \frac{d}{dt} \int_2^t \frac{s^3 - 1}{2s^2 + s - 1} \, ds$$

$$3. \frac{d}{dt} \int_{t}^{-3} \sin^2(x) \, dx$$

The Fundamental Theorem of Calculus

Fundamental Theorem Part I: Chain Rule

Evaluate each of the following

$$1. \frac{d}{dt} \int_0^{t^2} \cos(x^2) \, dx$$

$$2. \ \frac{d}{dt} \int_{-2t}^{t} \frac{1}{1+x^2} \, dx$$

The Fundamental Theorem of Calculus

Fundamental Theorem Part II

Evaluate each of the following

1.
$$\int_{-2}^{1} (x^2 + 2x + 1) \, dx$$

$$2. \int_0^{\frac{\pi}{6}} \cos(x) \, dx$$

$$3. \int_0^1 e^x \, dx$$

$$4. \int_{1}^{2} \frac{x^3 - 4}{x} \, dx$$