Series

1) Consider the series $\sum_{k=0}^{\infty}(-1)^{k}$
i) Write out the first five partial sums of this series.
ii) Find a general formula for the partial sums. Does it converge? Does the series converge?
2) Consider the series $\sum_{k=1}^{\infty} \ln \left(\frac{k+1}{k}\right)$.
i) Does the n-th term test say anything about this series?
ii) Show that this is a telescoping series and find a formula for the partial sums. Does the series converge?
3) Consider the series $\sum_{n=0}^{\infty}\left(1-\frac{1}{n}\right)^{n}$. Does the n-th term test apply to this series? Does the sequence of general terms converge? Does the series converge?
4) Suppose that $\sum a_{n}$ converges. Show that $\sum \cos \left(a_{n}\right)$ must diverge.
5)For the following series determine whether they converge or not. In case of convergence, find the exact sum.
i) $\sum_{n=0}^{\infty} \frac{2^{n+1}}{3^{n}}$
ii) $\sum_{n=1}^{\infty}\left(\frac{-5}{9}\right)^{n}$
iii) $\sum_{n=0}^{\infty}\left(\frac{\pi}{e}\right)^{n}$
5) Write $0 . \overline{3}$ as a geometric series and find its sum
6) Determine whether the following statements are true or false.
i) If $\lim a_{n}=0$ then $\sum a_{n}$ converges.
ii) If $\sum a_{n}$ converges then $\lim a_{n}=0$
iii) If $\sum a_{n}$ does not converge then $\lim a_{n} \neq 0$
iv) If $\sum a_{n}$ does not converge then who knows what the $\lim a_{n}$ is.
v) A geometric series $\sum r^{n}$ is always convergent with sum $\frac{1}{1-r}$
