Determine whether the following sequences converge. In case of convergence, find the limit.

1) $a_{n}=\frac{n}{e^{n}}$
2) $a_{n}=1+(-1)^{n}$
3) $a_{n}=\frac{\sin (n)}{\ln (n)}$
4) $\sqrt{3}^{n}$
5)Determine whether the following sequences are increasing, decreasing or not monotone.

$$
\text { i) } a_{n}=\frac{1}{3 n+5} \quad \text { ii) } a_{n}=\frac{n-2}{n+2} \quad \text { iii) } a_{n}=3+\frac{(-1)^{n}}{n} \quad \text { iv) } a_{n}=\frac{n}{n^{2}+n-1}
$$

Directions: Determine whether the following statements are true or false. Justify your answer. If the answer is false, provide a counterexample.
1)If $\lim \left|a_{n}\right|=L$ then $\lim \left|a_{n}\right|= \pm L$
2) If $\lim a_{n}=L$ then $\lim \left|a_{n}\right|= \pm|L|$
3) Every bounded sequence is convergent.
4) Every convergent sequence is bounded.
5) Every bounded monotone sequence is convergent.

A Bonus Problem: If you provide a complete and rigorous solution to this problem by Friday, you will get 5 extra points. Let a_{n} be defined as follows:
$a_{1}=1, a_{n+1}=\sqrt{3+a_{n}}$ for $n \geq 1$. Show that
i) a_{n} is bounded from above by 3 (use induction)
ii) a_{n} is increasing (can use induction again)
iii) Conclude that a_{n} is convergent. Find its limit.

