$\qquad$

## Math 112.01 - Quiz 8

1) Determine the form of the partial fraction decomposition of $\frac{x^{9}+2 x^{3}+x-7}{\left(x^{4}+x^{3}+2 x^{2}\right)^{2}}$. Do NOT attempt to determine the constants.

Solution: First observe that this is an improper fraction so there will be a polynomial part (of degree 1 ) in the decomposition. A polynomial of degree 1 looks like $a x+b$. Next we need to factor the denominator completely which is $\left(x^{2}\left(x^{2}+x+2\right)\right)^{2}=x^{4}\left(x^{2}+x+2\right)^{2}$. Now we can write down the form of the decomposition:
$\frac{x^{9}+2 x^{3}+x-7}{\left(x^{4}+x^{3}+2 x^{2}\right)^{2}}=a x+b+\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x^{4}}+\frac{E x+F}{x^{2}+x+2}+\frac{G x+I}{\left(x^{2}+x+2\right)^{2}}$
2) Evaluate $\int \frac{x^{3}}{x^{2}+1} d x$

Solution: Notice that the integrand is an improper rational function. By long division, $\frac{x^{3}}{x^{2}+1}=x-\frac{x}{x^{2}+1}$. So,
$\int \frac{x^{3}}{x^{2}+1} d x=\int\left(x-\frac{x}{x^{2}+1}\right) d x=\frac{x^{2}}{2}-\int \frac{x}{x^{2}+1} d x$.
To evaluate the second integral, use the substitution $u=x^{2}+1$ and obtain

$$
\int \frac{x^{3}}{x^{2}+1} d x=\frac{x^{2}}{2}-\frac{\ln \left(x^{2}+1\right)}{2}+C
$$

3) Evaluate $\int \frac{d x}{x^{4}+x^{2}}$

Solution: First find the partial fraction decomposition:
$\frac{1}{x^{4}+x^{2}}=\frac{1}{x^{2}\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+1}$
Then determine the constants. They turn out to be $A=0, B=1, C=0, D=-1$. Therefore
$\int \frac{d x}{x^{4}+x^{2}}=\int\left(\frac{1}{x^{2}}-\frac{1}{x^{2}+1}\right) d x=\frac{-1}{x}-\arctan (x)+C$

