\qquad

Math 112.01 - Quiz 7

1) Evaluate $\int_{0}^{1} t e^{-t} d t$

Solution: Let's first find the antiderivative using integration by parts. Let $u=t$ and $d v=e^{-t} d t$ so that $d u=d t$ and $v=-e^{-t}$. (The other choice of u is not good here: Recall the LIATE rule). So

$$
\begin{aligned}
& \int t e^{-t} d t=-t e^{-t}+\int e^{-t} d t=-t e^{-t}-e^{-t} \text { and } \\
& \int_{0}^{1} t e^{-t} d t=-t e^{-t}-\left.e^{-t}\right|_{0} ^{1}=1-\frac{2}{e}
\end{aligned}
$$

2) Evaluate $\int \arcsin (2 x) d x$

Solution: Again by integration by parts and the "LIATE" rule we have

$$
u=\arcsin (2 x), \quad d v=d x \text { so that } d u=\frac{2}{\sqrt{1-4 x^{2}}} \text { and } v=x . \text { Hence, }
$$

$$
\int \arcsin (2 x) d x=x \arcsin (2 x)-\int \frac{2 x d x}{\sqrt{1-4 x^{2}}}
$$

To evaluate the integral on the right, use a regular substitution: $u=1-4 x^{2}$. The final result will be

$$
\int \arcsin (2 x) d x=x \arcsin (2 x)+\frac{\sqrt{1-4 x^{2}}}{2}
$$

