Math 112.01 - Quiz 6 and Solutions

1) Find the particular solution of the initial value problem: $\left\{\begin{array}{l}\frac{x^{2}}{y^{2}-3} \frac{d y}{d x}=\frac{1}{2 y} \\ y(1)=2\end{array}\right.$ Find y as an explicit function of x.

Solution: Separating the variables we have $\frac{2 y d y}{y^{2}-3}=\frac{d x}{x^{2}}$. Integrating (use the substitution $u=y^{2}-3$ on LHS)
$\ln \left|y^{2}-3\right|=\frac{-1}{x}+C$
$y^{2}=3+C e^{\frac{-1}{x}}$
Using the initial condition, $C=e$ and we should take the positive square root. So the solution is $y=3+\sqrt{e^{1-\frac{1}{x}}}$
2) Compute the following limits:
i) $\lim _{x \rightarrow \infty} \frac{-\ln (x)}{\sin \left(\frac{1}{x}\right)}$
ii) $\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x}$

Solution:

i) Note as $x \rightarrow \infty, \ln (x) \rightarrow \infty$ and $\sin \left(\frac{1}{x}\right) \rightarrow 0^{+}$. Therefore this limit is $-\infty$. LR CANNOT be applied here.
ii) This is an instance of the indeterminate form 1^{∞}.
$\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x}=\lim _{x \rightarrow \infty} e^{x \ln \left(1-\frac{1}{x}\right)}$
Now we need to determine, $\lim _{x \rightarrow \infty} x \ln \left(1-\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(1-\frac{1}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{\left(1-\frac{1}{x}\right)} \cdot \frac{1}{x^{2}}}{\frac{-1}{x^{2}}}=-1$ by LR
Therefore, the final answer is $e^{-1}=\frac{1}{e}$

