\qquad

Math 112.01 - Quiz 5 with Solutions

1) Find the volume of the solid whose base is the parabolic region $\left\{(x, y): x^{2} \leq y \leq 1\right\}$ and the cross-sections perpendicular to y-axis are semicircles.

Solution: The region is

Since the cross sections are perpendicular to the y-axis, we need to integrate wrt y and from 0 to 1 . A typical cross section y-units from the origin is a semicircle with diameter in the given region. The radius of the cross section is $x=\sqrt{y}$, therefore its area is $\frac{1}{2} \pi x^{2}=\frac{1}{2} \pi y$. Therefore the integral which gives the volume is $\int_{0}^{1} \frac{1}{2} \pi y d y=\frac{\pi}{4}$.
2) Let R be the region bounded by the $y=x^{2}, \quad y=0, \quad x=1$, and $x=2$. Set up, but do NOT evaluate, an integral that would give the volume of the solid obtained by rotating the region R about $x=4$. Sketch the region and show a typical strip. Specify which method you are using.

Solution: First sketch the region

Observe that in this case the method of cylindrical shells is more convenient. The integral for the shell method is

$$
\int_{1}^{2} 2 \pi(4-x) x^{2} d x
$$

It is also possible to use the washer method in this problem but it requires two integrals (Why?). It would be

$$
\int_{0}^{1} \pi\left(3^{2}-2^{2}\right) d y+\int_{1}^{4} \pi\left((4-\sqrt{y})^{2}-2^{2}\right) d y
$$

Verify that these two methods give the same answer!

