Name_____

Math 112.01 – Quiz 3 and Solutions

1) Let $f(x) = x^2 + 2x + 3$

i) Use \sum -notation to express the right Riemann sum for f on the interval [0,2] with regular partition having n sub-

1) Use Z-notation to n_n^2 divisions. Call this expression R_n . ii) How does R_n compare to $\int_0^2 (x^2 + 2x + 3) dx$ (for any value of n)? Is it an underestimation, overestimation or

iii) Compute $\lim_{n \to \infty} R_n$ to find the exact value of $\int_0^2 (x^2 + 2x + 3) dx$.

iv) Compute $\int_{0}^{2} (x^{2} + 2x + 3) dx$ using FTC (second version). Is it the same as what you found in part iii)?

Solutions: i)Here, $\Delta x = \frac{2-0}{n} = \frac{2}{n}$ and $c_k = x_k = \frac{2k}{n}$. So,

$$R_n = \sum_{k=1}^n f(c_k) \Delta x_k = \sum_{k=1}^n f(\frac{2k}{n}) \frac{2}{n}$$

= $\frac{2}{n} \sum_{k=1}^n \left((\frac{2k}{n})^2 + 2(\frac{2k}{n}) + 3 \right)$
= $\frac{8}{n^3} \sum_{k=1}^n k^2 + \frac{8}{n^2} \sum_{k=1}^n k + \frac{2}{n} \sum_{k=1}^n 3$
= $\frac{8n(n+1)(2n+1)}{6n^3} + \frac{8n(n+1)}{2n^2} + \frac{6n}{n}$
= $\frac{8(n+1)(2n+1)}{6n^2} + \frac{8(n+1)}{2n} + 6$

ii) $R_n \ge \int_0^2 (x^2 + 2x + 3) dx$ i.e., it is an overestimation for any value of n. This is because f is increasing on the interval [0,2]. (By a theorem we have, for an increasing function any right sum is an overestimation for the definite integral). -

iii)
$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{8(n+1)(2n+1)}{6n^2} + \lim_{n \to \infty} \frac{8(n+1)}{2n} + \lim_{n \to \infty} 6 = \frac{16}{6} + \frac{8}{2} + 6 = \frac{38}{3}$$
iv)
$$\int_0^2 (x^2 + 2x + 3)dx = (\frac{x^3}{3} + x^2 + 3x) \Big|_0^2 = \frac{38}{6}$$

As expected, this answer is the same as what we found in part iii, because the definite integral is defined to be the limit of Riemann sums.