Name

Math 112.01 - Quiz 3 and Solutions

1) Let $f(x)=x^{2}+2 x+3$
i) Use \sum-notation to express the right Riemann sum for f on the interval $[0,2]$ with regular partition having n subdivisions. Call this expression R_{n}.
ii) How does R_{n} compare to $\int_{0}^{2}\left(x^{2}+2 x+3\right) d x$ (for any value of n)? Is it an underestimation, overestimation or could be either? Justify your answer.
iii) Compute $\lim _{n \rightarrow \infty} R_{n}$ to find the exact value of $\int_{0}^{2}\left(x^{2}+2 x+3\right) d x$.
iv) Compute $\int_{0}^{2}\left(x^{2}+2 x+3\right) d x$ using FTC (second version). Is it the same as what you found in part iii)?

Solutions: i)Here, $\Delta x=\frac{2-0}{n}=\frac{2}{n}$ and $c_{k}=x_{k}=\frac{2 k}{n}$. So,

$$
\begin{aligned}
R_{n} & =\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}=\sum_{k=1}^{n} f\left(\frac{2 k}{n}\right) \frac{2}{n} \\
& =\frac{2}{n} \sum_{k=1}^{n}\left(\left(\frac{2 k}{n}\right)^{2}+2\left(\frac{2 k}{n}\right)+3\right) \\
& =\frac{8}{n^{3}} \sum_{k=1}^{n} k^{2}+\frac{8}{n^{2}} \sum_{k=1}^{n} k+\frac{2}{n} \sum_{k=1}^{n} 3 \\
& =\frac{8 n(n+1)(2 n+1)}{6 n^{3}}+\frac{8 n(n+1)}{2 n^{2}}+\frac{6 n}{n} \\
& =\frac{8(n+1)(2 n+1)}{6 n^{2}}+\frac{8(n+1)}{2 n}+6
\end{aligned}
$$

ii) $R_{n} \geq \int_{0}^{2}\left(x^{2}+2 x+3\right) d x$ i.e., it is an overestimation for any value of n. This is because f is increasing on the interval $[0,2]$. (By a theorem we have, for an increasing function any right sum is an overestimation for the definite integral).
iii) $\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \frac{8(n+1)(2 n+1)}{6 n^{2}}+\lim _{n \rightarrow \infty} \frac{8(n+1)}{2 n}+\lim _{n \rightarrow \infty} 6=\frac{16}{6}+\frac{8}{2}+6=\frac{38}{3}$
iv)

$$
\int_{0}^{2}\left(x^{2}+2 x+3\right) d x=\left.\left(\frac{x^{3}}{3}+x^{2}+3 x\right)\right|_{0} ^{2}=\frac{38}{6}
$$

As expected, this answer is the same as what we found in part iii, because the definite integral is defined to be the limit of Riemann sums.

