Exam 2

Math 112: Calculus B
Name: \qquad
100 points
10/21/2001

- You must show all work to receive full credit.

1) (10 points each) Evaluate the following:
a) $\int \cot (x) d x$

Solution: $u=\sin (x), d u=\cos (x) d x$

$$
\begin{aligned}
\int \cot (x) d x & =\int \frac{\cos (x)}{\sin (x)} d x \\
& =\int \frac{1}{u} d u \\
& =\ln |u|+C \\
& =\ln |\sin (x)|+C
\end{aligned}
$$

b) $\int \frac{1}{\sqrt{x}(1+\sqrt{x})} d x$

Solution: $u=1+\sqrt{x}, \quad d u=\frac{1}{s \sqrt{x}} d x$

$$
\begin{aligned}
\int \frac{1}{\sqrt{x}(1+\sqrt{x})} d x & =2 \int \frac{1}{u} d u \\
& =2 \ln |u|+C \\
& =2 \ln |1+\sqrt{x}|+C
\end{aligned}
$$

c) $\int \frac{x}{\sqrt{4-x}} d x$

Solution: $u=4-x, d u=-d x \quad x=4-u$

$$
\begin{aligned}
\int \frac{x}{\sqrt{4-x}} d x & =-\int \frac{4-u}{\sqrt{u}} d u \\
& =-\int\left(4 u^{\frac{-1}{2}}-u^{\frac{1}{2}}\right) d u \\
& =-\left(8 u^{\frac{1}{2}}-\frac{2}{3} u^{\frac{3}{2}}\right)+C \\
& =-8 \sqrt{4-x}-\frac{2}{3} \sqrt{(4-x)^{3}}+C
\end{aligned}
$$

d) $\int \frac{2 x}{e^{x}} d x$

Solution: $u=2 x, d u=2 d x, d v=e^{-x} d x, v=-e^{-x}$

$$
\begin{aligned}
\int \frac{2 x}{e^{x}} d x & =-2 x e^{-x}+2 \int e^{-x} d x \\
& =-2 x e^{-x}-2 e^{-x}+C
\end{aligned}
$$

e) $\int \frac{(\ln (x))^{2}}{x} d x$

Solution: $u=\ln (x), d u=\frac{1}{x} d x$

$$
\begin{aligned}
\int \frac{(\ln (x))^{2}}{x} d x & =\int u^{2} d u \\
& =\frac{u^{3}}{3}+C \\
& =\frac{(\ln (x))^{3}}{3}+C
\end{aligned}
$$

2) (10 points) A 20-foot chain weighing 8 pounds per foot is lying on the ground. How much work is required to raise the chain 20 -feet so that it is fully extended vertically.
Solution: Weight: 8 Deltay, Distance Lifted : y

$$
\int_{0}^{20} 8 y d y=\left.4 y^{2}\right|_{0} ^{20}=1600
$$

3) (10 points) Find the volume of the solid of revolution generated by revolving the region bounded by $y=6-x^{2}$, and $y=2$ about the line $y=2$.
Solution: $6-x^{2}=2 \Rightarrow x= \pm 2$, radius $=6-x^{2}-2=4-x^{2}$

$$
\begin{aligned}
\pi \int_{-2}^{2}\left(4-x^{2}\right)^{2} d x & =\pi \int_{-2}^{2}\left(16-8 x^{2}+x^{4}\right) d x \\
& =\left.\pi\left(16 x-\frac{8 x^{3}}{3}+\frac{x^{5}}{5}\right)\right|_{-2} ^{2} \\
& \approx 3413 \pi
\end{aligned}
$$

4) (10 points) The base of a certain solid has the shape of the region bounded by $y=x^{2}, y=-x^{2}-1$, $x=0$, and $x=2$. Determine the volume of the solid if vertical cross sections perpendicular to the x-axis are semicircles.
Solution: Diameter $=x^{2}-\left(-x^{2}-1\right) \Rightarrow$ Radius $=\frac{2 x^{2}+1}{2} \Rightarrow A(x)=\frac{\pi}{2}\left(\frac{2 x^{2}+1}{2}\right)=\frac{\pi}{8}\left(4 x^{4}+4 x^{2}+1\right)$

$$
\frac{p i}{8} \int_{0}^{2}\left(4 x^{4}+4 x^{2}+1\right) d x=\left.\frac{p i}{8}\left(\frac{4 x^{5}}{5}+\frac{4 x^{3}}{3}+x\right)\right|_{0} ^{2} \approx \frac{38.27 \pi}{8}
$$

5) (10 points) Given the initial value problem

$$
\begin{aligned}
\frac{d y}{d x} & =x-y^{2} \\
y(0) & =1
\end{aligned}
$$

approximate $y(1)$ using Euler's method with step size equal to 0.25 .
Solution: $x_{0}=0, y_{0}=1$

$$
\begin{aligned}
& x_{1}=0.25, \quad y_{1}=1+0.25\left(0-1^{2}\right)=0.75 \\
& x_{2}=0.5, \quad y_{1}=0.75+0.25\left(0.25-(0.75)^{2}\right)=0.671875 \\
& x_{3}=0.75, \quad y_{1}=0.671875+0.25\left(0.5-(0.671875)^{2}\right)=0.684021 \\
& x_{4}=1, \quad y_{1}=0.684021+0.25\left(0.75-(0.684021)^{2}\right)=0.75455
\end{aligned}
$$

6) (10 points) Given the sloe field for the differential equation $\frac{d y}{d x}=x-y^{2}$, draw an approximate solution the initial value problem given in question (5).

Solution:

