Exam 1

Math 112: Calculus B

Name: \qquad
100 points
02/07/2001

- You must show all work to receive full credit.

1) (8 pts) The graph of two functions are shown below. One is the graph of a function $f(x)$ the other is a graph of its area function $A_{f}(x)$. Determine which is $f(x)$ and which is $A_{f}(x)$. Explain how you arrived at your conclusion.

Solution: Since $A_{f}(x)$ is an antiderivative of $f(x)$ then it follows that $f(x)$ is the derivative of $A_{f}(x)$. From differential Calculus we know that $f(x)$ should be positive when $A_{f}(x)$ is increasing and $f(x)$ should be negative when $A_{f}(x)$ is decreasing. Further, $f(x)$ must be zero when $A_{f}(x)$ attains an extreme value. From these observations the function with initial point at approximately $(0,-2.1)$ and terminal point at approximately $(3,1.5)$ is $A_{f}(x)$.
2) (8 pts) Describe what the mean value theorem says and how it relates to the average value of a function.

Solution:The mean value theorem for integrals states that if f is a continuous function on $[a, b]$ then there is a point, c, in $[a, b]$ such that $f(c)=\frac{\int_{a}^{b} f(x) d x}{b-a}$.

The average value of f on the interval $[a, b]$ is given by $f(c)$.
3) (24 pts) Given that $A_{f}(x)=\int_{0}^{x} f(t) d t$ write each of the following in terms of the area function.
a) $\int_{-4}^{1} \frac{\mathrm{f}(t)}{\sqrt{2}} d t$

$$
\begin{aligned}
\int_{-4}^{1} \frac{\mathrm{f}(t)}{\sqrt{2}} d t & =\frac{1}{\sqrt{2}}\left\{\int_{-4}^{0} \frac{\mathrm{f}(t)}{\sqrt{2}} d t+\int_{0}^{1} \frac{\mathrm{f}(t)}{\sqrt{2}} d t\right\} \\
& =\frac{1}{\sqrt{2}}\left\{-\int_{0}^{-4} \frac{\mathrm{f}(t)}{\sqrt{2}} d t+\int_{0}^{1} \frac{\mathrm{f}(t)}{\sqrt{2}} d t\right\} \\
& =\frac{1}{\sqrt{2}}\left\{-A_{f}(-4)+A_{f}(1)\right\}
\end{aligned}
$$

b) $\int_{-3}^{3} f(t) d t$

$$
\begin{aligned}
\int_{-3}^{3} f(t) d t & =\int_{-3}^{0} f(t) d t+\int_{0}^{3} f(t) d t \\
& =-\int_{0}^{-3} f(t) d t+\int_{0}^{3} f(t) d t \\
& =-A_{f}(-3)+A_{f}(3)
\end{aligned}
$$

c) $\int_{6}^{2 x} f(t) d t$

$$
\begin{aligned}
\int_{6}^{2 x} f(t) d t & =\int_{6}^{0} f(t) d t+\int_{0}^{2 x} f(t) d t \\
& =-\int_{0}^{6} f(t) d t+\int_{0}^{2 x} f(t) d t \\
& =-A_{f}(6)+A_{f}(2 x)
\end{aligned}
$$

4) (36 pts) Evaluate the following using the Fundamental Theorem of Calculus.
a) $\int_{2}^{4}\{2 \sin (x)-4 x\} d x$

$$
\begin{aligned}
\int_{2}^{4}\{2 \sin (x)-4 x\} d x & =-\cos (x)-\left.2 x^{2}\right|_{2} ^{4} \\
& =[-2 \cos (4)-32]-[-2 \cos (2)-8] \\
& \approx-23.52
\end{aligned}
$$

b) $\int_{1}^{2}\left\{\frac{1}{x^{3}}\right\} d x$

$$
\begin{aligned}
\int_{1}^{2}\left\{\frac{1}{x^{3}}\right\} d x & =\left.\frac{-1}{2 x^{2}}\right|_{1} ^{2} \\
& =\frac{-1}{8}--12 \\
& =0.375
\end{aligned}
$$

c) $\frac{d}{d t} \int_{4}^{t} \ln \left(x e^{x}\right) d x$

$$
\frac{d}{d t} \int_{4}^{t} \ln \left(x e^{x}\right) d x=\ln \left(t e^{t}\right)
$$

d) $\int_{2}^{x} \frac{d}{d t}\{\cos (\ln (t))\} d t$

$$
\begin{aligned}
\int_{2}^{x} \frac{d}{d t}\{\cos (\ln (t))\} d t & =\left.\cos (\ln (t))\right|_{2} ^{x} \\
& =\cos (\ln (x))-\cos (\ln (2))
\end{aligned}
$$

5) (8 pts) Use the Fundamental Theorem of Calculus to find $f(x)$ provided $A_{f}(x)=\{\sin (2 x-1)\}^{2}$.

$$
\begin{aligned}
f(x) & =\frac{d}{d x} A_{f}(x) \\
& =2 \sin (2 x-1) \cos (2 x-1) 2 \\
& =4 \sin (2 x-1) \cos (2 x-1)
\end{aligned}
$$

6) (8 pts) Use the Fundamental Theorem of Calculus to find

$$
\begin{aligned}
& \frac{d}{d t} \int_{2 t}^{3 t^{2}} \ln (x) d x \\
& \int_{2 t}^{3 t^{2}} \ln (x) d x=\int_{2 t}^{0} \ln (x) d x+\int_{0}^{3 t^{2}} \ln (x) d x \\
&=-\int_{0}^{2 t} \ln (x) d x+\int_{0}^{3 t^{2}} \ln (x) d x \\
& \int_{2 t}^{3 t^{2}} \ln (x) d x=-A_{f}(2 t)+A_{f}\left(3 t^{2}\right) \text { and } \frac{d}{d t}\left\{-A_{f}(2 t)+A_{f}\left(3 t^{2}\right)\right\}=-2 f(2 t)+6 t f\left(3 t^{2}\right)
\end{aligned}
$$

thus

$$
\frac{d}{d t} \int_{2 t}^{3 t^{2}} \ln (x) d x=-2 \ln (2 t)+6 t \ln \left(3 t^{2}\right)
$$

7) Estimate the area under the curve $f(x)=\frac{1}{\sqrt{1-x^{3}}}$ on the interval $[-2,0]$ using four approximating rectangles with height defined using right endpoints.

$$
\begin{aligned}
& a=-2, b=0, n=4, \Delta x=\frac{0-(-2)}{4}=\frac{1}{2} \\
& x_{i}=-2+i\left(\frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x \\
& =\sum_{i=1}^{4} f\left(-2+\left(\frac{i}{2}\right)\right) \frac{1}{2} \\
& =\frac{1}{2}\left\{f\left(\frac{-3}{2}\right)+f(-1)+f\left(\frac{-1}{2}\right)+f(0)\right\} \\
& \approx \frac{1}{2}\{0.47809+0.70711+0.942809+1\} \\
& \approx 1.564
\end{aligned}
$$

