Math. 152 - Midterm 1 - Form A

SHOW YOUR WORK!

Note: A random sample of graded exams will be xeroxed.

1) (15 points) The following sum

$$
\left|3-\frac{5}{n}\right| \frac{5}{n}+\left|3-\frac{10}{n}\right| \frac{5}{n}+\left|3-\frac{15}{n}\right| \frac{5}{n}+\ldots+\left|3-\frac{5 n}{n}\right| \frac{5}{n}
$$

is a right Riemann sum approximating a definite integral $\int_{a}^{b} f(x) d x$, using a partition of the given interval $[a, b]$ into n equal parts. Write down such a definite integral. Using this fact compute the limit of these sums as $n \rightarrow \infty$. (Note: you can interpret the integral as the sum of areas of two elementary geometric figures.)
2) (26 points) Find the following indefinite integrals
(a) $\int \frac{5 t^{2}-2}{t^{2}} d t$
(b) $\int \frac{\cos (6 x)}{\sin (6 x)+7} d x$
3) (26 points) Find the following definite integrals
(a) $\int_{-1}^{1} \frac{1}{2+|u|} d u$
(b) $\int_{0}^{\pi / 3} \frac{\sin (x)}{\cos ^{6}(x)} d x$
4) (15 points) Find the derivative $\frac{d y}{d x}$ where $y=\int_{0}^{\sqrt{x}} s \sqrt{1+s^{4}} d s$, using the Fundamental Theorem of Calculus.
5) (18 points) Find the total area between the graphs of $y=x^{3}-3 x$ and $y=x^{2}-x$. Note that the enclosed region consists of two parts.

