Problem of the Week-4: Convergent or Divergent?

Let that $a_{n}=a_{1}, a_{2}, a_{3} \ldots$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_{n}$ diverges and let $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ then show that:
1.

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{s_{n}} \text { diverges }
$$

2.

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{s_{n}^{2}} \text { converges. }
$$

As always, explain and justify your answer.

Hints:

1. Show that $\frac{a_{N+1}}{s_{N+1}}+\ldots+\frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+k}}$,
2. Show that $\frac{a_{n}}{\left(s_{n}\right)^{2}} \leq \frac{1}{s_{n-1}}-\frac{1}{s_{n}}$

Posting Date 10/08/11. Submit solutions to Noah Aydin, Mathematics Department, RBH 319 (e-mail or hard-copy, but hard copy submissions must include a time stamp) by 4 pm on 10/21/11.

