Geometry of Graphs

Vocabulary

Important terms for describing the behavior a function $f:$
positive/negative: f is positive at the point x if $f(x)>0$ and f is negative at the point x if $f(x)<0$. (Similarly: non-negative means $f(x) \geq 0$ and non-positive means $f(x) \leq 0$.)

For instance, if we are considering the function $f(x)=x^{3}-x$, we have

Increasing/decreasing: f is strictly increasing on the interval (a, b) provided that if you move from left to right on the graph, you go uphill. Formally: if $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right) . f$ is increasing on the interval (a, b) provided that if you move from left to right on the graph, you don't go downhill: Formally: if $x_{1}<x_{2}$, then $f\left(x_{1}\right) \leq f\left(x_{2}\right)$. Strictly increasing functions are increasing; the reverse is not true. (The diagram below shows a function that is increasing on $[0, \infty)$, but not strictly increasing.)

f is strictly increasing on (approximately) $(-\infty,-.58)$ and on $(.58, \infty)$

Similarly, f is strictly decreasing on the interval (a, b) provided that if you move from left to right on the

f is strictly decreasing on (approximately) (-. $58, .58)$ graph, you go downhill. Formally: if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right) . f$ is decreasing on the interval (a, b) provided that if you move from left to right on the graph, you don't go uphill.

Stationary point: a point x is a stationary point for the function f, provided that $f^{\prime}(x)=0$.

f has stationary points at (approximately)

$$
x=-.58 \text { and } x=.58
$$

Graphical Characteristics of ("nice") functions

Other important terms: concave up/ concave down (on an interval) (Rather than defining this in a formal mathematical way, we just think of this graphically.)

Four "puzzle pieces":

Increasing
Concave Up

Increasing
Concave down

Decreasing
Decreasing
Concave down
inflection point: x is an inflection point for the function f, provided that \boldsymbol{f} changes concavity at x. That is, as the graph of f moves through the point $(x, f(x))$, the graph goes from concave up to concave down or vice versa. $\left(f(x)=x^{3}-x\right.$ has a point of inflection at $x=0$, because its graph goes from concave down to concave up there, as shown in the graph to the right.)

Local and Global Extrema

Maxima: A function f

- has a global or absolute maximum at $\mathrm{x}=a$ provided that there is no point on the graph of f that is higher than $(a, f(a))$.
- has a local maximum at $\mathrm{x}=a$ provided that $(a, f(a))$ is the highest point in a small region of the graph surrounding it.

Minima: A function f

- has a global or absolute minimum at $\mathrm{x}=a$ provided that there is no point on the graph of f that is lower than $(a, f(a))$.
- has a local minimum at $\mathrm{x}=a$ provided that $(a, f(a))$ is the lowest point in a small region of the graph surrounding it.

The generic word for either maximum or minimum is extremum.

General concept		
Maximum Plural: maxima	Local maximum (or maxima)	Global or absolute maximum or (maxima)
Minimum Plural: minima	Local minimum (or minima)	Global or absolute minimum or (minima)
Extremum Plural: extrema	Local extremum (or extrema)	Global or absolute extremum or (extrema)

