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Teaching Real Analysis—An active approach

Activity 1: Below you will find several statements involving a sequence (an)
of real numbers and a real number L. In each case, consider the statement as an
“alternative” to the definition of (an) → L. Provide an example of a sequence
(an) of real numbers and a number L that satisfies the “definition” and yet does
not converge to L. Accompany your example with a verbal explanation of the
inadequacies of the definition.

1. The sequence (an) converges to L if for all ε > 0 there exists n ∈ N such
that d(an, L) < ε.

2. The sequence (an) converges to L if for all ε > 0 there exists N ∈ N such
that for some n > N , d(an, L) < ε.

3. The sequence (an) converges to L if for all N ∈ N there exists ε > 0 so
that for all n > N , d(an, L) < ε.

4. The sequence (an) converges to L if for all N ∈ N and all ε > 0 there
exists n > N such that d(an, L) < ε.1

Activity 2: The second “epsilonics” definition. Your students have been
thinking about sequence convergence for a while and now you are to tackle con-
tinuity. How do you start with your students’ prior understanding of continuity
(from calculus) and end up with the standard ε− δ definition for continuity?

Activity 3: Starting with only the definition of sequence convergence, prove
that the real sequence 0, 1, 0, 1, 0, 1, . . . does not converge. Once again,
psychoanalyze yourselves and your students in this mathematical situation.

Activity 4: Work on proofs of the following three standard theorems. Ask
yourselves what kinds of “skills and practices” you are using, what “presuppo-
sitions or assumptions” you are bringing to bear, and how you know “where to
focus your attention.”

• Prove that lim
x→3

x2

1 + x2
=

9

10
.

• Let (an) and (bn) be sequences in R. Suppose that an → L and bn →M .
Prove that (anbn) converges to LM .

1This exercise is taken from Closer and Closer: Introducing Real Analysis by Carol S.
Schumacher, c©Jones and Bartlett Publishers, 2008.
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• Let X and Y be metric spaces, and let f : X → Y be a function. Prove
that f fails to be uniformly continuous if and only if there exist ε > 0 and
sequences (xn) and (yn) in S such that dX(xn, yn) → 0 and yet for all
n ∈ N, dY (f(xn), f(yn)) ≥ ε

Activity 5: You are teaching a real analysis class and have just defined con-
tinuity. Your students have been told that K is a fixed real number, that x
is a fixed element of the metric space X and that f : X → R is a continuous
function. They have been asked to prove that if f(x) > K, then there exists
an open ball about x such that f maps every element of the open ball to some
number greater than K.

One of your students comes into your office saying that he has “tried every-
thing” but cannot make any headway on this problem. When you ask him what
exactly he has tried, he simply reiterates that he has tried “everything.” What
is happening? What do you do?

Activity 6: Work on proofs of the following three standard theorems. Think
about pictures. Think about the relationship between analysis and geometry.
How does each problem speak to this very important relationship?

• Let K be a non-empty subset of R. We say that K is bounded if K is
bounded both above and below. That is, if there exist real numbers m
and M such that for all k ∈ K, m ≤ k ≤M .

Prove that K is bounded if and only if there exists a real number T such
that for all k ∈ K, |k| ≤ T .

• Let B be a non-empty subset of R that is bounded above (and therefore
has a supremum/least upper bound, supB.) Let b ∈ R be an upper bound
for B. Prove that the following statements about b are equivalent.

1. b = supB.

2. For each positive number ε there exists x ∈ B such that |x− b| < ε.

3. For each positive number ε there exists x ∈ B such that x ∈ (b− ε, b].

• Let K be a subset of R. Let f : K → R be a one-to-one, continuous
function. Show that the inverse function f−1 : f(K) → R need not be
continuous. Find a hypothesis on K that is sufficient to guarantee the
continuity of f−1.
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